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A B S T R A C T

Context: Cross-version defect prediction (CVDP) is a practical scenario in which defect prediction models are
derived from defect data of historical versions to predict potential defects in the current version. Prior research
employed defect data of the latest historical version as the training set using the empirical recommended
method, ignoring the concept drift between versions, which undermines the accuracy of CVDP.
Objective: We customized a Selected Training set and Transfer Learning Framework (ST-TLF) with two
objectives: a) to obtain the best training set for the version at hand, proposing an approach to select the
training set from the historical data; b) to eliminate the concept drift, designing a transfer strategy for CVDP.
Method: To evaluate the performance of ST-TLF, we investigated three research problems, covering the
generalization of ST-TLF for multiple classifiers, the accuracy of our training set matching methods, and the
performance of ST-TLF in CVDP compared against state-of-the-art approaches.
Results: The results reflect that (a) the eight classifiers we examined are all boosted under our ST-TLF, where
SVM improves 49.74% considering MCC, as is similar to others; (b) when performing the best training set
matching, the accuracy of the method proposed by us is 82.4%, while the experience recommended method
is only 41.2%; (c) comparing the 12 control methods, our ST-TLF (with BayesNet), against the best contrast
method P15-NB, improves the average MCC by 18.84%.
Conclusions: Our framework ST-TLF with various classifiers can work well in CVDP. The training set selection
method we proposed can effectively match the best training set for the current version, breaking through the
limitation of relying on experience recommendation, which has been ignored in other studies. Also, ST-TLF
can efficiently elevate the CVDP performance compared with random forest and 12 control methods.
. Introduction

With the development of software technology, the reliability of
oftware is increasingly required, especially with the increasing reliance
n software in all areas of our society [1], not just aerospace and
inance [2]. Before the release of the project at hand, effectively testing
nd repairing the defects are crucial for improving the quality of the
oftware and lowering the technical debt [3]. Defect prediction based
earning algorithm is one of the most important methods for software
eliability maintenance [4], including defect-prone prediction [5], code
ulnerability prediction [6], fragile code prediction [7]. Thanks to
he popularization of project management tools [8], e.g., the version
ontrol system [9] and the defect tracking system [10], these tools can
btain historical defect data from the software repository. To improve
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1 The NLE is the complexity of the method expressing as the depth of the maximum embeddedness of conditional, iteration, and exception handling block
copes, wherein the ’if-else-if’ construct only the first ‘if’ instruction is considered. The following instructions are taken into account: if, else, for, while, dowhile,
witch, try, catch, finally and block statements that are directly inside another block statement.

the reliability of the software system, previous studies have proposed
various defect prediction models based on available defect data to
identify potential defects in targeted projects [11–13].

Most investigations watching defect prediction provide plentiful
technical references and significant practical guidance for Cross-project
defect prediction (CPDP) and Inner-version defect prediction (IVDP)
[14–16]. Such studies, however, are rare regarding Cross-version defect
prediction (CVDP) [17]. For the projects with multiple versions, CVDP
is a practical scenario by training the defect prediction models on the
defect data of the historical versions to predict the defect labels of
modules in the upcoming version [17,18]. Contrasting other projects,
the version at hand can inherit and refactor some modules from the
prior version, which makes the distribution of defect data between
vailable online 14 May 2022
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versions more similar [17]. Unfortunately, the statistical properties
of the current version (e.g., dependencies and cyclomatic complexity)
change over time in an arbitrary way against the historical version,
which is called concept drift [19–21]. For example, the change of
Nesting Level Else-If (NLE)1 for the getResourceStream in class AntClass-
Loader for Ant1.3 & Ant1.4. The NLE changed from 5 (i.e., try ⤏
if⤏ try ⤏ if ⤏ while) in Ant1.3 to 3 (i.e., try ⤏ if⤏ if) in Ant1.4.
Learning under concept drift is highly susceptible to producing la-
bile prediction results [22]. And, concept drift is unavoidable in the
CVDP, attributing to the change of requirements [23], the refactoring
of code [24], and the repair of defects. A core assumption of any
prediction model is that test data distribution does not differ from the
training data distribution [21]. As a result, concept drift may result in
decreased accuracy and reliability of the defective model, which will
bring inevitable troubles to the testing work [25–28].

Prior work raised concerns regarding similar problems that are
training and testing data from different versions. Turhan indicated that
concept drift of training and test data is the main reason for the volatile
results of defect prediction [19]. Dong et al. [20] demonstrated that
concept drift makes the mean square error of training and test set high,
which leads to the classification model with high accuracy but low re-
call. The studies argued that the difference in data distribution between
versions reduces the reliability of the prediction model [17,29–31].

To mitigate the risk of concept drift, some researchers suggested
implementing the practical of cross-project approaches in cross-version
scenarios [29,32,33]. However, the defect data of CVDP has higher
similarity than CPDP. Although some CPDP approaches are effective in
CVDP, they favor the mixed data of source domain and target domain
for data processing, which can dilute the defect information of the
target version. Besides, transfer learning also provides a new direction
to solve concept drift between versions [34]. Transfer learning aims to
solve challenging learning problems between the target domain and the
source domain [35–37], which is consistent with the scenario applica-
tion of CVDP. Previous studies have demonstrated the ability of transfer
learning to solve such problems [38,39]. For instance, Nam et al.
applied a Transfer Component Analysis (TCA) approach to enhance
feature distributions in source and target projects similar [40]. Chen
et al. proposed two phases of collective transfer learning for the dis-
tribution differences between the source and target projects, including
the source data expansion phase and adaptive weighting phase [41]. Xu
et al. used the balanced distribution adaptation (BDA) based transfer
learning method to narrow the data gap between versions [42]. These
techniques that improve performance for CVDP focus on removing
the invalid instances in historical defect data that can interfere with
classifier decisions. While they ignore the adaptation between the new
version and multiple historical versions.

Previous studies have also considered the problem of selecting
training sets for the target version. They have employed the defect
data of the (accessible) latest prior release as the training set of the
defect model according to the practical experience [17,43,44]. And,
they considered that the concept drift of data distribution between
the last and current versions is the minimum. However, in our prior
work, we found that the data diversities between the new version
and different historical versions are different in the same project [45].
In other words, even between near versions, there may be an acute
or slight concept drift problem. In practice, it is also unrealistic to
construct defect models on each historical defect data for the target
version. Choosing an optimal training set for the targeted version is
one of the effective ways to avoid acute concept drift. Unfortunately,
no such approach is currently available.

To solve the problems mentioned above, we propose a CVDP
Framework through two strategies: the Selected Training set and
Transfer Learning, called ST-TLF. Firstly, we design a voting-based
feature similarity detection method, named ST, combining multiple
feature evaluators to obtain feature comparability between versions
2

and then selected a training set with minor feature drift for the target o
version from multiple historical versions. Our ST maps the complex
multi-dimensional defect features to a comparable dimension to avoid
strong concept drift between source and target domains. And then, we
customize an instance-based non-inductive transfer learning approach
to select more effective defect instances in the dataset we selected for
training the defect predictor. This method utilizes a cluster analyzer
derived from defect data of the new version to screen instances in the
historical version to an upcoming version, which perfectly employs
the distribution characteristics of defect data in the target version.
Combining the two techniques mentioned above, our ST-TLF overcomes
concept drift between versions in CVDP.

To prove the validity of this method, we evaluated the effectiveness
of our ST-TLF for CVDP performance using three performance metrics
on 37 versions of 10 projects from an open-source defect dataset [46–
48]. We first evaluated the universality of the framework by eight
algorithms and then performed comparative experiments using the
random forest and BayesNet as the basic classifiers of our framework.
The results show that (a) our ST-TLF with different classifiers can work
better than baseline, and (b) our ST-TLF achieves encouraging CVDP
performance against the total of 13 approaches, including random
forest and 12 control methods. Finally, the universality and limitations
of the ST-TLF are analyzed. On this basis, the direction of further work
is discussed.

In sum, this paper makes the following contributions:

• We found that defect data of the latest historical version sug-
gested by the empirical recommended method was not always the
optimal training set for the new version in CVDP.

• A dataset matching method based on the importance of variables
is proposed to match the best training set for the target ver-
sion in CVDP, which breaks through the limitations of empirical
recommendation in previous studies.

• A sample-based non-inductive transfer learning is customized to
solve concept drift in CVDP, which focuses on the distribution of
defects in the target version.

• To improve the accuracy and reliability of CVDP, we designed the
ST-TLF framework. The experimental results show that the ST-TLF
method effectively improves the performance of the defect model
comparing random forest and 12 control methods.

The remainder of this paper is organized as follows. Section 2 intro-
duces technical background about transfer learning and related work
of training set selection technology and CVDP. Section 3 illustrates
the technical details of our ST-TLF method for solving the concept
drift in CVDP. Section 4 presents the design of our case study, while
Section 5 analyzes the results of each research problem. Section 6
discusses the importance of our research for research and practice alike,
and Section 7 shows the threats to the validity of our study. Finally,
Section 8 draws conclusions and prospects.

2. Related work

In this chapter, we provide the research background for CVDP, in-
cluding transfer learning, training set matching technology, and related
research of CVDP.

2.1. Transfer learning

Transfer learning is a machine learning paradigm [49]. The feature
space 𝑋 and edge probability distribution 𝑃𝑋 of the target domain
𝐷𝑡 and the source domain 𝐷𝑠 for traditional machine learning are the
same, whereas that of transfer learning is different [50]. There are
many forms of transfer learning, where we are only concerned about
instance-based transfer learning.

An implicit assumption behind the instance-based approaches is
that the source domain 𝐷𝑠 and the target domain 𝐷𝑡 have a lot of

verlapping features, which means that the domains share the same
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or similar support [50]. This is, instance-based transfer learning can
reuse labeled data from the source domain 𝐷𝑠 to help train a more
accurate model for the target domain 𝐷𝑡 [38,39], which can apply to
the scenario for CVDP. In the source domain 𝐷𝑠, some labeled samples
favor the training more accurate defect predictor for the target domain
𝐷𝑡, and some labeled instances can impair the generalization ability of
the classifier. Stakeholders directly employ all samples from the source
domain 𝐷𝑠 to train the prediction model, which may not promote the
target task in many applications. Therefore, the participator needs to
filter out samples from the source domain 𝐷𝑠 that meet the similar
distribution of the target domain 𝐷𝑡, and applies them to training to
reduce the bias of the new model. This is the same intent as cross-
version defect prediction. There is no customized transfer learning
method for CVDP, but similar research appears in CPDP. For example,
Peters et al. designed a transferring subset strategy with a clustering
algorithm on the mixed project data [51]. Ma et al. proposed Transfer
Naive Bayes (TNB) using the information of all the proper features
in training data [52]. Liu et al. [53] proposed a two-phase transfer
learning model (TPTL) for CPDP to release the limitation of TCA+
proposed by Nam et al. [40]. And, prior studies apply select methods to
select a representative module subset from the latest historical version
based on the pairwise dissimilarities between the modules of the two
versions [17,30]. Kawata et al. proposed a relevancy filter method
on the mixed data of the target project and the original project to
transfer qualified instances from the source domains for improving the
accuracy of CPDP [54]. These studies provide support for designing
transfer learning methods to improve the accuracy of CVDP. Based on
these studies, we customized a defect prediction framework for CVDP
through non-inductive transfer learning, which improved the accuracy
of defect prediction through two data processes: training set matching
and instance transferring.

2.2. Training set matching technology

Prior researches have fewer concerns about selecting training sets
for CVDP. Amasaki evaluated the settings of two training sets in CVDP:
single older version(SOV) and multiple older versions(MOV) [29]. The
results show that MOV works better than SOV for 14 out of 20 CPDP
approaches, recommending that practitioners employ mixed defect data
from multiple historical versions as training sets. And then, in 2020, he
subdivided the scenarios acquired by the training set, considering de-
fect data of cross-projects [33]. The expanding study shows that Single
Prior Version (SPV) without cross-project data (referring to the latest
published Version) was the best scenario, which is inconsistent with
previous research conclusions. Some studies recommended the defect
data from the latest historical version as the training set according
to practical experience, considering its data distribution to be most
similar to that of the version at hand. However, in our other work,
we found that the diversities between the new version and different
historical versions are varying in the same project [45]. Therefore, the
accuracy of defect predictors derived from different historical versions
of defect data for the upcoming version also varies considerably, and
even adjacent versions do not necessarily obtain reliable prediction
results [45]. Currently, no research has proposed a customized training
set matching method for CVDP. When considering related work, we
investigated the research on CPDP. Only, He et al. [55] proposed a two-
stage data filtering method riTDS composed of rTDS and iTDs for CPDP,
in which the rTDS mainly selects source projects with similar data
distribution to the target project from multiple source projects based on
the target project. In this study, we focused on the difference in defect
distribution between versions in the same project. Meanwhile, we de-
sign an ST method for matching training sets considering mapping the
features in complex space to comparable space, which breaks through
the limitations of experience recommendation in previous studies.
3

2.3. Cross-version defect prediction

As everyone knows, the performance of a machine learning-based
classification model depends primarily on the data that trains it. The
main difference between cross-version and inner-version defect predic-
tions is derived from the training set. Therefore, empirical studies for
IVDP are not fully applicable to CVDP. To investigate the performance
of cross-version defect models, Bennin et al. evaluated the performance
of CVDP by 11 machine learning algorithms with an effort-aware
performance measure [43]. The experimental results on 25 open-source
projects showed that M5 and Kstar models achieved the best perfor-
mance. Besides, non-parametric statistical results show that there was
no significant difference between the defect models they examined.
Also, Shukla et al. proposed a multi-objective logistic regression(MOLR)
algorithm concerning maximizing efficiency and minimizing cost [44],
comparing single-target algorithms: Logistic Regression, Naive Bayes,
Decision Tree, and Random Forest in MATLAB by F-measure and
recall. The experimental results with 11 projects show that the MOLR
model is superior to other single-target algorithms. Noting that Li
et al. evaluated the performance of the MOLR and the single objective
logistic regression for CVDP [56]. The experimental results show that
the performance of the single-target method is better than the multi-
objective method, which is not consistent with the results of [44].
Additionally, Yang and Wen compared Ridge regression (RR) and the
performance of other algorithms [57], where three the ridge parameters
are selected: GCV [58], HKB [59], and LW [60]. The results show
that GCV is slightly better for choosing the ridge parameter of RR for
CVDP than LW and HKB, but not significant, in which RR can achieve
better results than linear regression(LR) and NBR [61]; slightly (not
significant) better results than Lasso regression(LAR), principal com-
ponent regression(PCR) and learning-to-rank(LTR); and slightly (not
significant) worse results than Random Forest. Although we are not a
customized defect model survey for CVDP, we examined a variety of
defect models in comparative experiments using common performance
metrics, expanding the experience of CVDP in the software community.

The surveys mentioned above mainly focus on the general per-
formance of defect models in CVDP but do not contribute to solving
concept drift. The concept drift across versions can degrade the per-
formance of the classification model, which brings trouble to the test
work. Xu et al. approached this issue by leveraging a state-of-the-art
Dissimilarity-based Sparse Subset Selection (DS3) method [30]. Mean-
while, they combined Hybrid Active Learning and Kernel PCA (HALKP)
to address the challenge [62]. In 2019, they also proposed a two-
stage training subset selection framework for CVDP, called TSTSS, to
overcome the conundrum [17]. Although the approaches proposed by
Xu et al. are interesting [17,30,62], the contrasting technologies focus
on the dataset processing methods ignoring the diversity of ordinary
models (e.g., Random Forest and Adaboost), which confounds us about
understanding the generalizability ability of these techniques. And,
Yang et al. devised a new integration method based on [63]’s LTR
for CVDP [64], which is called LTRE. Additionally, they also executed
five ensemble approaches for demonstrating the effectiveness of LTRE,
covering Random Forest, Bagging, Extra-Trees, gradient boosting, and
Adaboost. The experimental results over 30 sets of cross-version data
show that the performance of LTRE is similar to that of random forest,
where other algorithms are worse than them. The principle of LTR
is the sensitivity of defect model to fault percentage, in which LTRE
achieves significantly larger mean FPA values than LTR at the 0.05
significance level, but without concerning concept drift. Noting that
this research is deficient, namely that the technical route of the subject
method is different from that of the contrast method, where LTRE,
Random Forest, and remaining (i.e., Bagging, Extra-Trees, gradient
boosting, and Adaboost) are implemented in Java, R, and Python,
respectively. Prior studies have verified that there are discrepancies in
the performance of defect prediction models implemented by toolkits
(e.g., Weka written in Java [65], R [66], MATLAB [67], Scikit-learn
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Fig. 1. Overview of our ST-TLF framework.
programmed by Python [68]), which can reduce the reliability of the
comparison test [14]. In this study, we designed a framework for the
CVDP to solve concept drift, which was validated in publicly available
datasets by contrasting multiple defect prediction models using familiar
metrics. These defect prediction models were implemented in Java by
Weka, enhancing experimental reliability.

Also, Amasaki first proposed the usefulness of the cross-project
approach in CVDP [29]. In 2018, he reviewed the performance of
17 cross-project approaches in CVDP [32]. And then, in 2020, he
strengthened the study that investigated the performance of 24 cross-
version methods in CVDP [33]. When the CPDP approaches apply to
cross-version scenarios, these methods still employ the mixed data of
source domain and target domain for data processing. Considering the
similarity of defect data between versions, these CPDP approaches are
pretty difficult to distinguish the information required by the target
version. Our ST-TLF considers the distribution characteristics of defect
data for the target version through a cluster analyzer.

Above all, CVDP has attracted much attention from practitioners
lately. These researches enrich the practical experience in CVDP, which
provides support for improving the accuracy of CVDP, but these in-
vestigations and studies are not perfect. To solve these problems, we
designed a defect prediction framework ST-TLF for CVDP. This research
endeavors to improve the deficiencies of the above studies in CVDP.

3. Methodology

As shown in Fig. 1, the transfer approach ST-TLF proposed by us
for CVDP mainly consists of four components: data preparation, train
dataset matching, instance transfer, and training classifiers, in which
the performance of defect models we trained depends primarily on
train dataset matching and instance transfer. In the diagram, on the
version management line, v.1, v.2, . . . ,v.n respectively represents mul-
tiple historical versions of the project 𝑃 , and v.t signals the upcoming
version, which is also the target version. The transfer framework ST-
TLF is a homogeneous transfer learning, which is a transfer learning
4

where the feature space X and label space Y of the source domain 𝐷𝑠
and the target domain 𝐷𝑡 are isomorphous [49,50,69]. We describe the
important part below.

3.1. Data preparation

For a project with multiple versions, the defect data of the historical
versions have rich defect labels, while that of the upcoming version has
no or few defect labels [17]. The deployment of our framework requires
that upcoming versions provide partial, even rarely, defect-tagged data.
During software development, these limited defect-labeled data that
the new version contains tend to be extracted from defect tracking
systems, e.g., Bugzilla, Trac, and MantisBT [9,10]. When executing
defect prediction using ST-TLF, the feature variables of defect data
between versions should be consistent, which is the prerequisite of
homogeneous transfer learning.

3.2. Train dataset matching method

Prior studies considered the selection of training sets for the current
version, which was not a deliberately designed approach but a conclu-
sion from empirical statistics [30,44]. Empirical recommended methods
assume that the last version has the most similar data distribution to the
upcoming version for CVDP, which is not always accurate in a project
with multi-version owing to the concept drift among versions [45].
We propose a novel strategy ST to identify and select the optimal
training set for the target version in the same project. To the best of our
knowledge, the ST is the first dataset matching technique designed for
the CVDP. The goal of the technique is to avoid strong concept drift that
may exist between training and test sets. Our ST evaluates the similarity
of distribution for defect data through the similarity of the feature
tendency of defect data between the historical and target versions. This
method assumes that if the training set and test set come from the
same data domain, their defect data have the same tendency of defect
features, this is if the domain differences are larger (i.e., the greater
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the concept drift between the source and target domains), the less the
similarity in their characteristic trends [49,50,69]. When considering
the traditional approaches, our method breaks through the limitation of
relying on experience and recovers the deficiency of previous research,
which is described in detail below.

Algorithm 1 Train dataset matching method: ST
Input: The defect data of upcoming version 𝐷𝑡 = {𝑋𝑡, 𝑌𝑡}; the historical

defect data 𝐷𝑠 = {𝐷𝑠1, ..., 𝐷𝑠𝑖, ..., 𝐷𝑠𝑛}; the defect data of the specific
historical version 𝐷𝑠𝑖 = {𝑋𝑠𝑖, 𝑌𝑠𝑖}; the number of historical versions
n; Attribute evaluator 𝐴𝐸𝑗 ; the number of the attribute evaluators
j; the threshold parameter k.

Output: Training sets matched for target version 𝐷𝑏𝑒𝑠𝑡.
1: 𝐹𝑚 is defect feature where m is the number of variables, 𝐹𝑟𝑎𝑛𝑘𝑖𝑛𝑔 =

∅.
2: Let the threshold 𝑘 < 𝑚,
3: while 𝐷𝑡, 𝐷𝑠(𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) do
4: while 1 ⩽ 𝑙 ⩽ 𝑗 do
5: 𝐹(𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑙) ← 𝐴𝐸{𝑙} for 𝐷{∙}
6: end while
7: 𝐹𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = 𝐹(𝑟𝑎𝑛𝑘𝑖𝑛𝑔,1) ∩ 𝐹(𝑟𝑎𝑛𝑘𝑖𝑛𝑔,∙) ∩ 𝐹(𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝑙) within the threshold

k.
8: end while
9: while i=1;i<n;i++ do

10: 𝐹𝐹𝑅 =
|𝐹𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝐷𝑡

∩ 𝐹𝑟𝑎𝑛𝑘𝑖𝑛𝑔,𝐷𝑠𝑖
|

𝑘
1: end while
2: Obtaining max

𝐷𝑠
𝐷𝑡 ∩𝐷𝑠𝑖, 𝐷𝑏𝑒𝑠𝑡 ← 𝐷𝑠𝑖

3: Return the 𝐷𝑏𝑒𝑠𝑡.

The flowchart and pseudocode of our ST are provided by the second
art of Fig. 1 and Algorithm 1, respectively. There is a project 𝑃

with multiple versions, in which 𝐷𝑡 = {𝑋𝑡, 𝑌𝑡} is the defect dataset
of the upcoming version 𝑣.𝑡, and 𝐷𝑠 = {𝐷𝑠1,… , 𝐷𝑠𝑖,… , 𝐷𝑠𝑛} is the
historical defect dataset where 𝐷𝑠𝑖 = {𝑋𝑠𝑖, 𝑌𝑠𝑖} is the defect dataset
of the historical version 𝑣.𝑖, 𝑋 is the feature space, and Y is the label
space. The purpose of our method is to select the 𝐷𝑠𝑖 with the highest
similarity to 𝐷𝑡, to satisfy the maximization of the following objective
function (1):

max
𝐷𝑠

𝐷𝑡 ∩𝐷𝑠𝑖 (1)

Considering the comparability between alternative training sets
in ST, we employ the variable evaluators to map complex multidi-
mensional defect features to comparable spaces. We then quantify
the feature overlap between them and the target domain, called the
feature folding ratio (FFR). To put it simply, we set the threshold
parameter 𝑘 to compare the ratio of identical variables between cross-
datasets within the cut-off range. The FFR is calculated by the following
formula (2).

𝐹𝐹𝑅 =
#𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

#𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑘)
∗ 100% (2)

Among, the higher the FFR, that is, the more the same variables
within the threshold 𝑘, the higher the distribution similarity of the
cross-versions of defect data in the feature space.

We implement the matching technology of the training set, ST,
by the Wrapper methods (i.e., single variable evaluator) to explain
the FFR between versions. To ensure the objectivity and accuracy of
feature evaluation, we customized a strategy for full voting combined
with multiple feature evaluation techniques to score the FFR. Namely,
within the threshold K, determining the importance of a variable
in datasets requires multiple methods to confirm together. Relevant
studies have proved that evaluating the worth of an attribute by the
information gain, the chi-squared statistic, and the information gain
ratio concerning the class [17,34,70–72]. We also examined the validity
5

of these evaluation techniques with massive experiments and confirmed
the information gain, the chi-squared statistic, and the correlation
coefficient as alternative evaluators. We have completed three tech-
nologies through weka’s API, where the interface names for three meth-
ods are i.e. InfoGainAttributeEval [73], ChiSquaredAttributeEval [74],
CorrelationAttributeEval [75], respectively.

We first experiment to evaluate the importance of variables in
both historical and new versions under three attribute evaluators
{𝐴𝐸1, 𝐴𝐸2, 𝐴𝐸3} in the same project. And then, the variables within
the threshold k in each version are confirmed by full voting. Finally,
after the relatively objective variable ranking of all versions of the same
project is obtained, the FFR between the historical and the new versions
is calculated by formula (2). In an experiment, when FFR is the same
between more than two historical versions and the new version, we
depend on practical experience that recommends the defect data of the
latest historical version on the timeline as a training set. Ant project, for
example, has historical and new versions with the same 60-dimensional
defect features. After ranking the importance of variables, the historical
version Ant1.5 of the defect data has 35 attributes that are the same
as the current version Ant1.7 within the threshold k = 50, so their FFR
= 35/50 = 70%, and also like this to Ant1.6. As a result, we selected
the defect data of Ant1.6 as the training set to predict the defects in
Ant1.7. If the FFR is less than 70% for ant16 & ant17, we chose Ant1.3
as the training set.

3.3. Transfer instance

Algorithm 2 A sample-based non-inductive transfer learning: TL
Input: The test set 𝐷𝑡 = {𝑥𝑡1, 𝑥𝑡2, ..., 𝑥𝑡𝑒}; the training set 𝐷𝑏𝑒𝑠𝑡 =

{𝑥1, 𝑥2, ..., 𝑥𝑔}; cluster analyzer EM; EM parameters 𝜃; estimated pa-
rameter �̂�{∙}; learner£{∙}; Clustering cluster 𝑧𝑟; Number of clusters
r.

utput: £{𝐷𝑏𝑒𝑠𝑡}.
1: Initialize EM parameters 𝜃 with the K-means running 10 times;
2: repeat
3: 𝑥𝑡𝑒 from 𝐷𝑡 to obtain 𝑝(𝑧𝑟|𝑥𝑡𝑒, �̂�𝑒).
4: Re-estimating parameters �̂�𝑒+1 ← �̂�𝑒

5: until the log likelihood 𝑙𝑛𝑝(𝐷𝑡|𝜃) converges (i.e., ‖�̂�𝑒+1 − �̂�𝑒‖ < 𝜀)
6: 𝐸𝑀(𝜃,𝐷𝑡) = 𝑧1 ∪ 𝑧2 ∪ ... ∪ 𝑧𝑟
7: 𝑥𝑔 from 𝐷𝑏𝑒𝑠𝑡 to compute 𝑝(𝑥𝑔 ∈ 𝑧𝑟) = 𝑝(𝑧𝑟|𝑥𝑔 , 𝜃)
8: for 𝑖 = 1; 𝑖 < 𝑔; 𝑖 + + do
9: for 𝑗 = 1; 𝑗 < 𝑟; 𝑗 + + do
0: 𝑃 (𝑍|𝑥𝑖) = argmax𝑧𝑟{𝑝(𝑧𝑟|𝑥𝑖, 𝜃)}
1: end for
2: if 𝑃 (𝑍|𝑥𝑖) > 𝜇 then
3: Keep 𝑥𝑖 in 𝑋𝑏𝑒𝑠𝑡
4: else
5: remove 𝑥𝑖 in 𝐷𝑏𝑒𝑠𝑡
6: end if
7: end for
8: Defect predictor £{𝐷𝑏𝑒𝑠𝑡}

How to filter labeled samples with similar distribution from the tar-
get domain data is one of the pivotal problems of sample-based transfer
learning, which determines the performance of the defect model trained
by it [69]. We propose a novel strategy TL that migrates valid defect
instances from historical versions we selected to train defect models for
the target version. The key to TL is instance-based clustering analysis. It
can first build a cluster analyzer from the defect data of the upcoming
version, then divide the distribution of defect instances in the new
version into several clusters, and finally output the cluster membership
(i.e., membership probability) for each instance in the defect data
of the historical version. The maximum membership probability of
historical instances in these clusters is obtained as the membership
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probability of historical instances in new versions. In the historical
version (namely, source domains), outlier instances are removed and
valid instances are transferred to train the defect models by setting
thresholds on subjection degree that is obtained by cluster analysis. The
cluster analysis model we selected is EM (Expectation & Maximization)
which is an unsupervised learning algorithm [76].

EM can automatically determine the number of clusters through an
internal cross-validation loop and output the membership probabili-
ties of defect instances in these clusters [76]. Although prior studies
have also favored employing EM algorithms for data processing, the
scenarios and objects of application are different. For example, in two
works by Herbold [77] and Herbold et al. [78], they mainly focus on
CPDP scenarios, while our method is CVDP scenarios. The difference
between the two scenarios is the source of the training set. That is, the
complexity of the redundant information contained in the training data
in the two scenarios is different. Additionally, the former was to process
the feature vectors for defect prediction using EM cluster analysis, and
the latter was to cluster the defect instances in the training and test
sets, and then train defect models on these clusters to predict potential
defects in the target project. Whereas, we employed EM methods to
learn the defect distribution characteristics of the targeted version
migrating more defect instances from the specific historical version for
the targeted version.

The flowchart and pseudocode of our TL are provided by the third
part of Fig. 1 and Algorithm 2, respectively. There is a upcoming
version-𝑡 with a set of defect data 𝐷𝑡 = {𝑥𝑡0, 𝑥𝑡2,… , 𝑥𝑡𝑒}. We employ
K-means running 10 times to initialize EM parameters 𝜃. The EM
cluster analyzer divides 𝐷𝑡 into several clusters 𝑍 = {𝑧1, 𝑧2,… , 𝑧𝑟} in
which 𝐷𝑡 = ∪𝑟

1𝑧𝑟 where each instance 𝑥(∙) has a corresponding 𝑧(∙).
If there is an historical version-𝑏𝑒𝑠𝑡 with a set of defect data samples
𝐷𝑏𝑒𝑠𝑡 = {𝑥0, 𝑥1,… , 𝑥𝑔}, the posterior probability of a historical instance
is 𝑝(𝑧𝑟|𝑥𝑔 , 𝜃) in cluster 𝑧𝑟 from 𝐷𝑡, where 𝜃 is the EM parameters. Thus,
the membership probability 𝑃 (𝑍|𝑥𝑔) for historical instances 𝑥𝑔 in the
ew version 𝐷𝑡 is the largest posterior probability 𝑝(𝑧𝑟|𝑥𝑔 , 𝜃) in cluster
𝑟, which can be obtained by the following formula (3).

(𝑍|𝑥𝑔) = argmax
𝑧𝑟

{𝑝(𝑧𝑟|𝑥𝑔 , 𝜃)} (3)

In practice, the defect data in the new version cannot directly
earn the optimal parameter 𝜃 for 𝑝(𝑧𝑟|𝑥𝑔 , 𝜃) in 𝑃 (𝑍|𝑥𝑔). To obtain the
(𝑧𝑟|𝑥𝑔 , 𝜃), the optimal parameter �̂� can be found by maximizing the
og-likelihood function, as shown in formula (4).

̂ = argmax
𝜃

𝑙𝑛𝑝(𝐷𝑡|𝜃) (4)

he 𝑙𝑛𝑝(𝐷𝑡|𝜃) can be transformed into the sum of the likelihood es-
imates of the clusters, as shown in formula (5) where 𝑞(𝑍) is any

efficient probability distribution of 𝑍 and ∑

𝑍 𝑞(𝑍) = 1; 𝑝(𝐷𝑡, 𝑍|𝜃)
is the joint probability of 𝐷𝑡 and 𝑍 under parameter 𝜃; 𝐾𝐿(𝑞 ∥ 𝑝)
Kullback–Leibler divergence) is used to measure the gap between 𝑞(𝑍)
nd posterior 𝑝(𝑍|𝐷𝑡, 𝜃).

𝑛𝑝(𝐷𝑡|𝜃) = (
∑

𝑍
𝑞(𝑍))𝑙𝑛𝑝(𝐷𝑡|𝜃)

=
∑

𝑍
𝑞(𝑍)𝑙𝑛

𝑝(𝐷𝑡, 𝑍|𝜃)
𝑞(𝑍)

+𝐾𝐿(𝑞 ∥ 𝑝)

= 𝓁(𝑞, 𝜃) +𝐾𝐿(𝑞 ∥ 𝑝)

(5)

Thus, 𝓁(𝑞, 𝜃) ≤ 𝑙𝑛𝑝(𝐷𝑡|𝜃) always holds true, and if and only if
𝐿(𝑞 ∥ 𝑝) = 0, this is 𝑞(𝑍) = 𝑝(𝑍|𝐷𝑡, 𝜃), 𝓁(𝑞, 𝜃) = 𝑙𝑛𝑝(𝐷𝑡|𝜃). In other

words, we found the minimum boundary value for 𝑙𝑛𝑝(𝐷𝑡|𝜃). During
his process, iterate continuously after initializing the parameter 𝜃.
uppose the process is in the 𝑡𝑡ℎ iteration, 𝑞(𝑍) follows

𝑒

6

̂(𝑍) = 𝑝(𝑍|𝐷𝑡, 𝜃 ) (6)
and thus,

𝓁(𝑞, 𝜃) =
∑

𝑍
𝑞(𝑍)𝑙𝑛

𝑝(𝐷𝑡, 𝑍|𝜃)
𝑞(𝑍)

=
∑

𝑍
𝑞(𝑍)𝑙𝑛𝑝(𝐷𝑡, 𝑍|𝜃) − 𝑞(𝑍)𝑙𝑛𝑞(𝑍)

=
∑

𝑍
𝑝(𝑍|𝐷𝑡, 𝜃

𝑒)𝑙𝑛𝑝(𝐷𝑡, 𝑍|𝜃) − 𝑞(𝑍)𝑙𝑛𝑞(𝑍)

(7)

We mark the item containing the parameters 𝜃 and 𝜃𝑒 as 𝛩(𝜃, 𝜃𝑒) that
s the expectation of log-likelihood 𝑙𝑛𝑝(𝐷𝑡, 𝑍|𝜃) to posterior distribution
(𝑍|𝐷𝑡, 𝜃𝑒), which can be obtained by the following formula (8).

(𝜃, 𝜃𝑒) =
∑

𝑍
𝑝(𝑍|𝐷𝑡, 𝜃

𝑒)𝑙𝑛𝑝(𝐷𝑡, 𝑍|𝜃)

= 𝐸𝑧|𝐷𝑡 ,𝜃𝑒 [𝑙𝑛𝑝(𝐷𝑡, 𝑍|𝜃)]
(8)

aximizing this expectation results in new and better parameter esti-
ation 𝜃𝑒+1, which is formula (9).
𝑒+1 = argmax

𝜃
𝛩(𝜃, 𝜃𝑒)

= argmax
𝜃

𝐸𝑧|𝐷𝑡 ,𝜃𝑒 [𝑙𝑛𝑝(𝐷𝑡, 𝑍|𝜃)]
(9)

he iteration is continued until the log-likelihood converges to obtain
he best model parameter estimation �̂�. Thus, the maximum mem-
ership probability of historical instances in the new version can be
btained, which is formula (10).

(𝑍|𝑥𝑔) = argmax
𝑧𝑟

{𝑝(𝑧𝑟|𝑥𝑔 , �̂�)} (10)

he valid instances from 𝐷𝑏𝑒𝑠𝑡 are selected to construct a new training
et 𝐷′

𝑏𝑒𝑠𝑡 for training the defect predictor by setting thresholds 𝜌 on
embership probability, in which 𝑋′

𝑏𝑒𝑠𝑡 has the following objectives:

max 𝐷𝑡 ∩𝐷′
𝑏𝑒𝑠𝑡

.𝑡. 𝑥𝑖 ∋ 𝐷′
𝑏𝑒𝑠𝑡, 𝑃 (𝑍|𝑥𝑖) ≥ 𝜌.

(11)

sing the above method, we have obtained a subset of data 𝐷′
𝑏𝑒𝑠𝑡 that

s more similar to the target data 𝐷𝑡 than the original training set 𝐷𝑏𝑒𝑠𝑡.
n Jedit, for example, the current version 4.3 and the latest historical
ersion 4.2. The unlabeled defect data of Jedit4.3 is divided into 8
lusters by the cluster analysis, i.e., 𝐷𝑗𝑒𝑑𝑖𝑡4.3 = 𝑧1 ∪ 𝑧2 ∪ ⋯ ∪ 𝑧8. In
edit4.2, 𝑃 (𝑍|𝑥39) = 𝑎𝑟𝑔max𝑧𝑟{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0} = 1.0,
nd 𝑃 (𝑍|𝑥70) = 𝑎𝑟𝑔max𝑧𝑟 {0.0, 0.0, 0.0241, 0.0, 0.9759, 0.0, 0.0, 0.0} =
.9759, in which 𝑥39 and 𝑥70 are defect instances of classes constructed
y static indicators of code, respectively. When considering 𝜌 = 0.98,
39 is chosen to constitute the training set 𝐷′

𝑗𝑒𝑑𝑖𝑡4.2, while 𝑥70 is dis-
arded.

.4. Classifier

For the defect prediction model, we illustrate two problems: class
mbalance and parameter sensitivity. As defect data are usually class
mbalanced, which impairs the performance of defect models, prior
tudies suggest using SMOTE techniques to overcome this problem in
VDP [31]. However, in this study, we cannot ignore the problem that
lass rebalancing technology can cause concept drift in the training
et, which can interfere with the effectiveness of our framework. As
result, we are not concerned about the impact of class imbalance on

he defect prediction model in this study. Meanwhile, we employ two
lassifiers: Random Forest and BayesNet. The former is not sensitive to
arameters [14,57], which is a popular classifier in defect prediction
utperforming other classifiers, and the latter is the best base learner
ecommended by prior work [33]. As shown in the fourth part of Fig. 1,
o predict the defect distribution in the current version, the defect
odel for CVDP is obtained using the filtered defect data we selected.

The ST-TLF framework we designed is a typical non-inductive mi-
ration learning. The first part, ST, makes full use of the distribution



Information and Software Technology 149 (2022) 106939Y. Zhao et al.
of the feature space in the source and target domains according to
the pre-conditions of transfer learning. The remaining work considers
the similarity of defect data between historical and manual versions,
focusing only on the distribution of data in the target version. Our ST-
TLF improves the accuracy of the defect model by reducing concept
drift through the two strategies mentioned above.

4. Experimental setup

To evaluate our framework ST-TLF, this section describes the
datasets, scenario design, research questions, statistical test, and so on.
Our experiments are all run on a 3.6 GHz Intel Core i7-7700 machine
with 16 GB RAM.

4.1. Benchmark dataset

In selecting the studied datasets, we identify three criterias that
need to be satisfied:

(1) Publicly and commonly available defect datasets;
To improve comparability and foster replication of our experiments,

we train our defect prediction models using publicly and commonly
available defect datasets.

(2) Projects with multiple versions;
In a project with multiple historical versions, the data drift between

the new version and different historical versions is diverse. The problem
we need to solve is concept drift between versions when using the
defect data from the historical version to predict the defects of the
coming version. Namely, we do not know which of these alternative
versions is the best training dataset. It is our task to choose the best
version from these historical versions for the new version. Therefore,
we need projects that can perform the CVDP experiment and have at
least two optional historical version defect data as a training set and
defect data of the new version as a test set.

(3) Each object contains at least more instances than variables.
Many studies have pointed out that learning in small samples can

produce unstable results [79,80] and proposed Events Per Variable (EPV)
to assess the potential impact of the training set, suggesting that the
EPV of the training set be greater than 10 [4,81]. EPV is the ratio of
the number of occurrences of the least frequently occurring class of
the dependent variable (i.e., the events) to the number of independent
variables used to train the model (i.e., the variables) [82]. Since defect
modules are rare in software products, training sets that meet 𝐸𝑃𝑉 >
10 are scarce. Tantithamthavorn et al. statistics indicate that 77 percent
of 101 datasets are at a high risk of producing inaccurate and unstable
results (i.e., 𝐸𝑃𝑉 < 10) [4]. To release this condition, we only employ
each object that contains at least more instances than the number of
characteristic variables. For example, when the feature vector provided
in the training set contains a variable number of 50, we only select
projects containing defect instances greater than 50.

We investigated several common and unified defect datasets, ulti-
mately selected jureczko datasets from PROMISE [46], which contain
different kinds of metric sets calculated with different tools. There-
fore, even if the same metric name appears in two or more different
datasets, we cannot be sure they mean the same metric. To eliminate
this deficiency, Ferenc et al. used the free and open-source Open-
StaticAnalyzer tool that analyzes systems source code to measure 60
static code indicators (size, complexity, coupling, cohesion, and inher-
itance) for each project [48]. We selected ten open source projects
(a total of 37 versions) that meet the experimental conditions in the
improved dataset. Their details include version, scale (i.e., the number
of instances contained in the dataset, where each is composed of the
attributes of code for a class or file), and defect ratio (i.e., the proba-
bility of defect instances in the dataset), as shown in the Table 1 [45].
For example, there are 351 instances in ant1.6, where the defect rate
is 0.262, implying that the number of defect instances in ant1.6 is
351 ∗ 0.262 = 92.
7

Table 1
Introduction to basic information about project.

Version Scale Ratio Version Scale Ratio Version Scale Ratio

ant1.3 125 0.160 xalan2.4 723 0.152 lucene2.0 194 0.469
ant1.4 178 0.225 xalan2.5 803 0.482 lucene2.2 246 0.585
ant1.5 293 0.109 xalan2.6 885 0.464 lucene2.4 339 0.599
ant1.6 351 0.262 xalan2.7 909 0.988 velocity1.4 196 0.750
ant1.7 745 0.223 poi1.5 237 0.595 velocity1.5 213 0.662
jedit3.2 272 0.331 poi2.0 314 0.118 velocity1.6 228 0.342
jedit4.0 306 0.245 poi2.5 385 0.644 xerces1.2 440 0.161
jedit4.1 312 0.253 poi3.0 442 0.636 xerces1.3 453 0.152
jedit4.2 367 0.131 synapse1.0 157 0.102 xerces2.0 546 0.725
jedit4.3 492 0.022 synapse1.1 222 0.270
camel1.0 339 0.038 synapse1.2 256 0.336
camel1.2 590 0.366 log4j1.0 135 0.252
camel1.4 841 0.172 log4j1.1 109 0.339
camel1.6 927 0.203 log4j1.2 205 0.078

4.2. Cross version scenario design

In this work, we have constructed many experiments of CVDP from
these datasets and selected 17 eligible experiments from 10 projects
through the following rules.

(1) Dataset Settings
In this study, we focus on the performance improvement of CVDP,

so the training and test set of the experiment must be from the historical
version and the new version of the same project, respectively.

(2) Training Set Settings
One of our tasks is to match the best training set for the new version

from the defect data of the historical versions. Therefore, we need
the CVDP experiment that has at least two optional defect datasets
from historical versions as the training set. For example, Ant is a
Java-based build tool, where the training set matched for the current
version Ant1.7 was derived from defect data of the historical versions
(i.e., Ant1.3, Ant1.4, Ant1.5, and Ant1.6).

4.3. Research questions

We empirically evaluate our devised method by answering the
following three Research Questions (RQ).

RQ1: How different classifiers impact the effectiveness of our framework
ST-TLF on CVDP performance?

This question investigates whether our ST-TLF can strengthen other
classifiers, not just a random forest. In the experiment, four ensemble
learners are implemented by Weka to learn defect models of CVDP,
including Bagging, AdaBoost, Random Forest [83], and Vote [13,84],
which have all been extended for handling streaming data with concept
drift [22]. AdaBoost selected pruned C4.5 decision tree as the base
learner, as do Bagging, and Vote’s combined classifiers are decision
tree, a logistic regression model with a ridge estimator, SVM, and Naive
Bayes, and their combined strategies are majority voting. And, we
have implemented two Neural network algorithms to participate in the
survey, involving RBF Classifier and DL4jMLP. Moreover, we consider
two independent algorithms most commonly used in defect prediction:
Support Vector Machine (SVM) and BayesNet [47,85].

RQ2: Is our training set matching technique ST effective?
The goal of ST is to select a training set for the version at hand

from the defect data of the prior versions. To evaluate the effec-
tiveness of our ST, we selected a training set construction scenario
for CVDP as a comparison strategy, i.e., Single Prior Version (SPV),
which is project data of the (accessible) latest prior release recom-
mended by Amasaki [33]. Although the rTDS is not specially cus-
tomized for CVDP, considering the similarity of functions, we intro-
duced it as a control method [55]. Since ST mainly depends on the
importance of variables, we selected five prevalent attribute evaluators
in defect prediction as control methods [34,70–72]. We implement
these five methods via API provided by Weka, whose interface names
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are GainRatioAttributeEval (GR) [86], ReliefFAttributeEval (ReF) [87],
ChiSquaredAttributeEval (CS) [74], CorrelationAttributeEval(CA), and
InfoGainAttributeEval(IGA), respectively. Their detailed explanations
are as follows:

GR: Evaluates the worth of an attribute by measuring the gain ratio
concerning the class.

ReF: Evaluates the importance of an attribute by repeatedly sam-
pling an instance and considering the value of the given attribute for
the nearest instance of the same and different class.

CS: Evaluates the score of a variable by computing the value of the
chi-squared statistic for the class.

CA: Evaluates the weight of a factor by computing the correlation
(Pearson’s) between it and the class [88].

IGA: Evaluates the worth of a feature by obtaining the information
gain to the class.

Based on the work efficiency of the above variable evaluators, we
also evaluated the combination of the CA and IGA, called CA+IGA.

RQ3: Compared with other methods, can our ST-TLF significantly im-
prove the performance of CVDP?

As mentioned in Section 2, we investigated the related work of
CVDP, of which our most relevant method is the TSTSS proposed by Xu
et al. [17], followed by Amasaki’s work [33]. We make great efforts to
replicate the work of Xu et al. but the results were not satisfactory. We
then selected the latter as our control method. According to Amasaki’s
work [33], in this work, we consider the approaches demonstrated in
the best scenario SPV, which are better than the baseline approach they
designed. The descriptions of these control methods are as follows:

P15-NB: The original Peters15 method with basic classifier Naive-
Bayes, where Peters15 extracts instances based on a multi-party data
sharing algorithm called LACE2 [51].

P15-RF: The original Peters15 method with basic classifier random
forest, in which the number of classification trees is 25 and the number
of iterations is five [51].

P15-LR: The original Peters15 method with basic classifier Logis-
tic [51].

K15-RF: The Kawata15 selects instances using DBSCAN, whose base
classifier is random forest [54].

K15-LR: The original Kawata15 with Logistic [54].
P14-LR: Panichella14 is combining defect classifiers of different

algorithms trained with results of classification of training data, which
is known as CODEP, where Logistic regression (CODEP-LR) was used
for combination [89].

P14-NB: The BayesNet (CODEP-BN) was employed for combina-
tion [89].

T09-NB: Turhan09 first transforms the metric data with the log-
arithm, then applies a relevancy filter to the available training data
based on the k-Nearest Neighbor (NN) algorithm, whose basic classifier
is NaiveBayes [90].

T09-RF: The original Turhan09 utilizes random forest as a base
classifier [90].

W08-RF: Watanabe08 standardizes metrics values with averages
of those from training data and testing data to improve the perfor-
mance of CPDP defect models, in which random forest is the best base
classifier [91].

We replicated ten defect models mentioned above by benchmark
CrossPare implemented by Herbold et al. [16]. In this study, we used
the same parameters as in previous studies [16,33]. Noting that among
the algorithms mentioned above, P15-NB is the best in SVP scenarios,
which is the control method we mainly focus on [33]. Besides, we
employ two transfer learning approaches of CPDP as control methods:
a two-phase transfer learning model (TPTL) [53] and a collective
transfer learning for defect prediction (CTDP) [41]. When replicating
CTDP, considering the limitations of cross-version defect data, we only
employ the transfer component analysis (TAC) and N1 strategies for
data processing, where N1 is the Min–Max normalization [41]. Also,
we consider the random forest without instance transfer strategy as the
8

most basic method.
4.4. Evaluation indicators

When predicting defective classes in a target version, a predictor
may succeed (True Positive, TP) or fail (False Positive, FP) to predict a
defect class, truly (True Negative, TN) or wrongly (False Negative, FN)
identify a clean class [53]. Based on these four possible results, in this
study, we use three comprehensive measures (i.e., F-measure, MCC, and
AUC) to evaluate the performance of the models in the experiment [92–
94]. F-measure is a trade-off between recall and precision which is
defined as

𝐹𝛽 =
(𝛽2 + 1)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(12)

The 𝛽 is a bias parameter to measure the relative importance of
recall and precision. In this work, we choose 𝛽 = 2 (i.e., F2) that
emphasizes more on the importance of recall, following the previous
studies [17,70]. AUC (Area Under Curve) is a performance indicator
to measure the quality of a learner by the relationship between TP
and FP at different thresholds [93]. The closer the AUC is to 1, the
stronger the model predicts; when it is equal to 0.5, the model loses
its predictive value. Matthews correlation coefficient (MCC) is a fairly
uniform index that considers four possible results [92,95]. Essentially,
MCC is the correlation coefficient between the actual situation and
the predicted results. The range of values is [−1,1], where +1 means
perfect prediction; 0 means no better than a random prediction; and
−1 means complete inconsistency between prediction and observation.
The formula for calculating MCC is as follows:

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(13)

eanwhile, we calculate the threshold-dependent performance mea-
ures (i.e., F-2 and MCC) using the default threshold parameter value
f 0.5. The AUC is a threshold-independent performance indicator
o measure a classifier’s ability under varying thresholds, which is
omputed by measuring the area under the curve that plots the TP rate
gainst the FP rate.

.5. Parameter configuration

When implementing this framework, the configuration of two pa-
ameters needs to be concerned. The first parameter is the threshold
arameter k in Eq. (2). This parameter is correlated with the feature
imension in the dataset, where it is required to be less than the feature
imension. Because the importance of feature variables is objective in
ature datasets, the threshold k within a reasonable range according

o the dimension of data characteristics has little influence on the
ccuracy of training set selection. In this work, the thresholds k of the
T, CA+IGA, and independent feature evaluators are 50, 50, and 20,
espectively. Another parameter is the threshold 𝜌 in Eq. (11). In this
ork, we determine the 𝜌 based on the membership probability of the
istorical instance in the new version. More specifically, we set the 𝜌
alue from 𝐷𝜌 = {0.0, 0.80, 0.85, 0.90, 0.95, 0.98} to determine whether to

transfer the historical instance for each cross-version pair. Note that we
consider the 0 migration scenario (i.e., no instances removed) due to
the similarity of defect data distribution between versions. According to
the above description, the final training set constructed by transferring
valid historical instances may be the original training set we selected.

4.6. Statistical test

To analyze and test the performance of these algorithms, Scott–
Knott Effect Size Difference (ESD) test is selected in this paper [4,70,
96]. We used the 𝑠𝑘_𝑒𝑠𝑑 function implemented in the ScottKnott ESD R
package to compare the identification performance of the approaches
we examined. Additionally, to measure the effect size of test results, we
compute the 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 effect size using the check Difference function

implemented in the ScottKnott ESD R package. The 𝑑 is derived from
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Fig. 2. The comparison results of 8 defect classifiers under our framework ST-TLF.
the distribution of the measured data, that is, the two means divided by
the standard deviation of the two groups of subjects (i.e., 𝑑 =

𝑥1 − 𝑥2
𝑠.𝑑.

).

The magnitude is accessed using the thresholds that are provided by
Cohen [97] as follows: negligible (𝑑 ≤ 0.2), small (0.2 < 𝑑 ≤ 0.5),
medium (0.5 < 𝑑 ≤ 0.8), and large (𝑑 > 0.8). If the 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 is larger,
it indicates that the significance difference between the data is more
obvious. Finally, according to the test results, the performance rankings
of all the algorithms across all the experimental objects are obtained.

5. Analysis of experimental results

This section presents the experimental results and analyses accord-
ing to different research questions.

5.1. Results for RQ1

Approach. In baseline experiments, we recommend the latest his-
torical version of the defect data as a training set, which is the most
popular method in previous work. To record the results of our ST, we
consider two composite indicators AUC and MCC. Following previous
studies [17,25,94], we chose the latter. We, therefore, only record the
results corresponding to the best MCC value among the multiple sets of
results for each cross-version pair.

Results. Fig. 2 not only provides the results for each defect model on
17 CVDP experiments using box plots, i.e., (a)–(h), but also presents the
ranking results of these learners using the vertical bar chart, i.e., (i).
9

The results of different algorithms are partitioned by blocks, each of
which reveals the results of three indicators paired by the baseline and
our framework ST-TLF in white and gray, respectively. The bottom and
top of the boxes indicate the first and third quartiles respectively, while
the solid horizontal line in a box indicates the median value in each
performance distribution, and the black diamond in a box indicates the
mean value in each performance distribution.

The following results can be observed from Fig. 2. Our framework
ST-TLF with various classifiers can achieve satisfactory performance.

The F2 can reflect the accuracy of the classifier. The accuracy of
all classifiers under our framework has been improved compared with
the baseline. For instance, the F2 of BayesNet is improved by 6.2%
under our framework, as shown in Fig. 2(a). The average F2 of the
defect predictors we examined is elevated by 5.2% to 7.8% under our
ST-TLF, of which the lower is the RBF classifier and the higher is the
SVM classifier, as shown in Fig. 2(h) and (g) respectively.

When considering AUC and MCC, the ST-TLF framework improves
the generalization ability of the defect model. The random forest has
increased average AUC and MCC under our ST-TLF by 4.2% and 22%,
respectively, as shown in Fig. 2(e). In the defect prediction models we
examined, some defect model models (i.e., Bagging, Adaboost, SVM,
and RBF Classifier) and the remaining models (i.e., BayesNet, Vote,
and DL4jMLP) achieved higher and lower improvements than random
forest, respectively. For instance, Adaboost, one of the most popular
predictors in defect prediction, has obtained encouraging results un-
der the framework ST-TLF, as shown in Fig. 2(f). The average AUC
and MCC of the baseline experiments for Adaboost were 0.679 and
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Table 2
Dataset matching results of 17 experiments for cross-version defect prediction.

NO. Test Train MCC SPV rTDS GR Ref CS CA IGA CA+IGA ST

1 ant1.5 ant1.3 0.183 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
ant1.4 −0.068 ⋆ ⋆ ⋆

2 ant1.6
ant1.3 0.321 ⋆ ⋆ ⋆ ⋆
ant1.4 0.104 ⋆
ant1.5 0.213 ⋆ ⋆ ⋆ ⋆

3 ant1.7

ant1.3 0.257 ⋆
ant1.4 0.089
ant1.5 0.246
ant1.6 0.427 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

4 jedit4.1 jedit3.2 0.471
jedit4.0 0.507 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

5 jedit4.2
jedit3.2 0.397
jedit4.0 0.456 ⋆
jedit4.1 0.443 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

6 jedit4.3

jedit3.2 0.049
jedit4.0 0.143 ⋆
jedit4.1 0.147 ⋆ ⋆
jedit4.2 0.176 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

7 camel1.4 camel1.0 0.025
camel1.2 0.393 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

8 camel1.6
camel1.0 0.066 ⋆ ⋆ ⋆
camel1.2 0.288
camel1.4 0.269 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 xalan2.6 xalan2.4 0.263
xalan2.5 0.381 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

10 xalan2.7
xalan2.4 0.042 ⋆ ⋆
xalan2.5 0.113 ⋆ ⋆ ⋆
xalan2.6 0.099 ⋆ ⋆ ⋆

11 poi2.5 poi1.5 0.505 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
poi2.0 0.064 ⋆ ⋆ ⋆

12 poi3.0
poi1.5 0.350 ⋆ ⋆ ⋆
poi2.0 0.100 ⋆ ⋆ ⋆
poi2.5 0.339 ⋆ ⋆ ⋆

13 synapse1.2 synapse1.0 0.283 ⋆ ⋆ ⋆ ⋆
synapse1.1 0.252 ⋆ ⋆ ⋆ ⋆ ⋆

14 log4j1.2 log4j1.0 0.115 ⋆ ⋆ ⋆ ⋆
log4j1.1 0.064 ⋆ ⋆ ⋆ ⋆ ⋆

15 lucene2.4 lucene2.0 0.274 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
lucene2.2 0.211 ⋆ ⋆

16 velocity1.6 velocity1.4 −0.078 ⋆
velocity1.5 0.329 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

17 xerces2.0 xerces-1.2 −0.146 ⋆ ⋆ ⋆ ⋆
xerces-1.3 0.190 ⋆ ⋆ ⋆ ⋆ ⋆

Accuracy 0.412 0.412 0.529 0.353 0.529 0.647 0.647 0.765 0.824
AVG.MCC 0.252 0.260 0.242 0.235 0.266 0.287 0.270 0.271 0.291
s
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0.229, respectively, while those obtained for random forest within our
framework ST-TLF were 0.725 and 0.295, respectively. Namely, by
comparing the baseline, the average improvement of AUC and MCC is
6.8% and 22.4%, respectively. These results show that our method can
enhance multiple learners to varying degrees, not just a random forest.

Fig. 2 (i) provides the ranking results of these learners under our
ST-TLF, which are obtained by the ScottKnott ESD using MCC results
from 17 experiments. Although SVM is the last ranked learner, its
improvement under ST-TLF is more significant than other classifiers. As
shown in Fig. 2(h), the average MCC of SVM is improved by 49.74%,
in which the baseline experiment is 0.185 and the target experiment is
0.275. BayesNet is the first ranking defect predictor under the frame-
work ST-TLF, which improved its average MCC by 12.8%. As we all
know, previous studies have not only researched the validity of random
forest for CVDP but also demonstrated its insensitivity to parameter
adjustment. To foster the replication and ensure the comparability of
our experiments, we choose BayesNet and random forest as our basic
classifiers for the following experiments.
10

e

Answer to RQ1: Overall, our framework ST-TLF with different clas-
ifiers can work well in CVDP, rather than customized basic algorithms.

.2. Results for RQ2

Approach. The essence of the research question is to verify the
ignificance of the first part of our framework for CVDP. To examine
he accuracy of ST, we present the MCC of the defect models trained
n the defect data of all historical versions as an evaluation metric.
Results. Table 2 provides the results of dataset matching with 17

xperiments for nine dataset matching approaches on CVDP, the last
art of which presents accuracy and the average MCC, in which ‘⋆’
ndicates the mark of defect data selected by a specific method. The
ersion number and MCC of the optimal training set for the current
ersion in each experiment are marked in bold, as shown in Table 2.

According to the analysis of the results provided by each experi-
ent, our ST is more efficient than other methods. The SPV, namely

he empirically recommended method, has worked well in 7 out of 17
xperiments, this is, the accuracy of SPV is only 41.2%, suggesting that
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it is not an optimal choice for the cross-version training set. Compared
with this, our ST has achieved good results in 14 out of 17 experiments
where two of the remaining three experiments (i.e., No. 2 and 5)
have the same results as the SPV. In other words, ST works as well
or better than the SPV in 16 of the 17 experiments. For example, in
experiment No. 1, the MCC of the defect model obtained by the last
version recommended by SPV as a training set is 0.068, while that of
the ST is 0.183, meaning that the comprehensive performance of the
defect model has increased by 369%. Experiment No. 9 has obtained
similar results as experiment No. 1. Like SPV, the accuracy of other
methods, including rTDS, is lower than that of our ST.

When considering the performance of defect models under the ST,
MCC can provide a reference for us. The ST we proposed improves
the performance of the defect prediction model by selecting a training
set, while SPV, the most commonly used method in previous studies,
was the worst, as did rDTS. Compared with SPV, the comprehensive
performance of the defect model obtained through the training set
recommended by ST is improved by 15.5%. The other approaches
(e.g., GR, ReF) are to build a training set matching strategy based on
the feature evaluator. The results of the training set recommended by
these strategies are different. For example, the MCC of the defect model
obtained from the CS recommended training set is 0.292 and that of the
ReF is 0.245. This result is due to the single variable assessor taking
into account one relevant factor between characteristics and response
variables. For example, CS relies primarily on the chi-square statistic for
each feature, and GR evaluates the value of an attribute by measuring
the gain ratio relative to the category. Relatively, our ST and CA + IGA
ave better work efficiency, of which our ST is superior. For example,
ur method ST improves the MCC of the defect model by about 7.4%
han CA + IGA by selecting a training set.

Our ST has another advantage: avoiding strong concept drift be-
ween training and test sets. There are many forms of concept drift,
.g., covariate drift, mean drift, and probability shift [19]. Class imbal-
nce drift is one type of probability shift, which is also one of the basic
ata provided by defect datasets. Combining the defect ratio in Table 1,
t is found that our ST can effectively avoid strong class imbalance
rift. As everyone knows, the poor results in CVDP experiments are
trongly related to class imbalance drift between versions. For example,
n experiment No. 9, the defect ratios of the training set Poi2.0 and test
et Poi2.5 are 0.118 and 0.644, respectively. And another benchmark
xperiment (i.e., Poi1.5 to Poi2.5), the class imbalance drift between
he training set and the test set is not significant, and the defect ratio
as 0.595 and 0.644, respectively. Their MCC is 0.064 and 0.505,

espectively. Similar situations are found in the training and test sets of
xperiments No. 1, No. 10, and No. 13. This is one of the unavoidable
roblems in CVDP, which has been ignored in previous studies. In
xperiment No. 1, prior studies recommended ant1.4 as the training set
or the ant1.5 learning defect prediction model, and the class imbalance
rift problem destroys the reliability of the defect model. Through
he similarity of abstract feature space, our ST recommends ant1.3 as
he training set to learn defect models for ant1.5. ST has a similar
erformance in other experiments, including experiments No. 9, 10,
nd 16. The above experimental results verify that our ST can avoid
trong class imbalance drift between two subjects. The principle of our
T to avoid strong class imbalance drift is to map information from
complex feature space to a comparable space, and then identify the

efect data with the minimum concept drift as the target version.
The SPV is a typical empirical recommendation method, which lacks

lexibility in combating class imbalance drift in CVDP. The rTDS uses
he descriptive statistics of variables to select the defect data for the
urrent version, but the general statistical description is not sensitive
o the response variables. Other dataset matching methods based on
he importance of feature variables introduce a single correlation factor
hat does not fully account for irregular changes in the feature space.
11

nd, our ST makes up for the shortcomings of the above-mentioned m
ethods, which can avoid class imbalance drift between datasets in
VDP, improving the performance of defect prediction models.
Answer to RQ2: In conclusion, ST is more effective to select the

raining dataset for the current version for enhancing CVDP perfor-
ance. Also, it can surmount the class imbalance drift between two

ubjects.

.3. Results for RQ3

Approach. To answer this question, we first executed our ST-TLF,
ontrol approaches, and baseline method on 17 CVDP experiments,
hen implemented a statistical test at the significance level of 0.05
o reveal the effectiveness of our framework. When we perform ST-
LF, according to previous practical experience from the software
ngineering community, we hired two predictors that are not sensitive
o a parameter as base classifiers: random forest and BayesNet, which
re called ST-TLF1 and ST-TLF2, respectively. In this work, we selected
wo evaluation indicators, covering AUC and MCC.
Results. Fig. 3, which consists of two parts (i.e., Figs. 3.1 and

.2), presents the AUC and MCC values for each evaluated experiment
cross the one baseline method, 12 control approaches, and ST-TLF
ramework. The results of the different experiments are partitioned
y the block, where AUC and MCC in each block are represented by
diamond-marked connection diagram and independent histogram,

espectively. To improve the readability of the results, we presented
he results for the baseline in each experiment separately with dotted
ines.

Fig. 4 visualizes the ranking results of the Scott–Knott ESD test for
5 methods under two performance indicators, where the horizontal
otted line represents their mean. And the dispersion degree of the
esults for a specific algorithm in multiple experiments relative to the
ean value is displayed with a black vertical solid line to explain

he generalization performance of the learning algorithm in multiple
xperiments.

The following results can be observed in Figs. 3 and 4:
First, as shown in Fig. 3, the MCC of ST-TLF1 is greater than

nd equal to that of random forest in 12 experiments and 4 exper-
ments, respectively, excluding experiment No. 7. In experiment No.
1, for example, the MCC of our ST-TLF1 and RF are 0.505 and
.064, respectively, indicating that ST-TLF improves 689.06% over
aseline RF. When considering the control method, P15-NB is the best
ethod recommended in Amasaki’s research work [33]. The ST-TLF2

cquires better MCC than P15-NB in 10 CVDP experiments, especially
xperiments Nos. 1, 2, and 11. The performance of our ST-TLF under
UC is similar to MCC.

Second, from Fig. 4, we find that ST-TLF1 and ST-TLF2 achieve
he highest and second-best average AUC across the 17 experiments,
ith values of 0.744 and 0.747, respectively. For ST-TLF1, the average
UC increased by 4.2% and 3.9% compared with RF and P15-NB,
espectively. Also, ST-TLF2 and ST-TLF1 obtain the best and next-best
verage MCC among all methods across the 17 experiments, where their
verage MCC values are 0.307 and 0.334, respectively. About ST-TLF2,
he average AUC and MCC improved by 3.24% and 18.84% compared
ith P15-NB, respectively.

Third, as shown in Fig. 4, ST-TLF rankings are among the top in all
odels we examined in the Scott–Knott ESD test of all the evaluation
etrics. The Cohen’s d of AUC between ST-TLF1 and RF is 0.315 and

ts magnitude is S, namely, the ST-TLF1 outperforms RF with the Small
agnitude of the effect size. The kernel classifiers of P15-NB and ST-
LF2 are similar. The results of the statistical test show that magnitude
f the effect size between P15-NB and RF is negligible, and ST-TLF2
btained a Small effect size compared to RF with a Cohen’s d value
f 0.295, illustrating ST-TLF2 exceeds baseline RF and comparative
ethod P15-NB.

Fourth, the comprehensive indicator MCC reveals a more significant
ifference in these algorithms than the threshold-independent perfor-

ance metric AUC. When comparing RF under the MCC, ST-TLF1 and
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Fig. 3.1. Contrasting results between our ST-TLF, control methods, and baseline in 17 experiments.
T-TLF2 obtain Small and Medium effect sizes, respectively, where
heir Cohen’s d values are 0.365 and 0.526, respectively. Considering
he improved efficiency of the defect model, although P15-NB and T09-
B also improve the performance of the baseline method, they do not
xceed our method. The underlying classifiers for P15-RF and ST-TLF2
re RF. ST-TLF1 and P15-RF obtained higher and lower MCC than RF,
ith values of 0.307 and 0.236, respectively. In the statistical test,
14-RF negatively treats the performance of the defect model, ranking
1 after the baseline experiment, whereas our ST-TLF1 significantly
mproves it. More exactly, our method improved by 27.1% over P15-RF.

RF is the baseline method we selected, which has been shown
o own outstanding accuracy for defect prediction in many studies.
mong the methods we examined, multiple methods did not effectively

mprove the performance of RF, e.g., K15-RF, W08-RF, and P15-RF,
hile our method greatly improved its accuracy. The principles of ST-
LF and these comparison methods are different. P15-RF is to discard

nstances that do not belong to any group through cluster analysis on
ixed defect data of source and target domain, and build the training

et for the training defect model with the remaining instances in the
ource domain. Besides, the data processing cores of TPTL and CTDP
re TCA, which minimizes the difference between domains by reducing
he dimension of the source domain and the target domain. This data
rocessing method may result in the loss of important information for
efect prediction in the target domain. Other contrasting approaches
ave also built data filter methods on mixed data. These methods
ay the same attention to the defect data of the source and target
omain. When the scale of the source data is much larger than the
arget domain, some key knowledge of the target domain will be diluted
12
or lost. Our method fully keeps a watchful eye on the specificity
of the target domain, surmounting the shortcomings of the control
method. ST-TLF reduces the concept drift between versions through two
processes: first, selecting the best training set for the current version
through the similarity of the abstract feature space between the source
domain and target domain; then, filtering instances in the selected
training set through clustering analysis of the defect data for the current
version. Therefore, the elaborately training set built by ST-TLF is more
refined and targeted. Also, ST-TLF is more flexible control the training
set according to the practice conditions (i.e., specificity of the version at
hand), which is a factor that is not taken into account by other control
methods.

Answer to RQ3: In summary, ST-TLF is more effective for enhancing
CVDP performance than other control methods and baseline.

6. Discussion

In a project with multiple versions, there is data drift between
versions. To solve this problem, our study provides a defect prediction
framework for CVDP, whose predictors can be potentially redeveloped.
Our experimental results show that the instance transfer strategy im-
proves the reliability of the defect prediction model compared with
the original results. Improving CVDP performance is challenging, our
results can provide a reference for researchers in practice. Besides,
considering the similarity between CVDP and CPDP, we infer that this
method may effectively improve the performance of defect models in
CPDP, which is the focus of our future work.
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Fig. 3.2. Contrasting results between our ST-TLF, control methods, and baseline in 17 experiments.
Fig. 4. The ranking result of Scott–Knott ESD for 15 classifiers under two performance
indicators.

Class imbalance is a familiar phenomenon in defect prediction,
including CVDP [31]. Defect models are trained on class imbalanced
datasets, which are highly susceptible to producing inaccurate pre-
diction models [98]. We have shown its negative impact on CVDP
performance through RQ2 in Section 5.2. Prior work raised concerns
13
Fig. 5. Comparison results of SMOTE under our ST-TLF in 17 experiments.

regarding the class imbalance in IVDP, and suggested SMOTE technique
is beneficial for improving the reliability of the defect model [31].
Whether this conclusion applies to CVDP has not been proved. In
this study, we examined the performance of SMOTE under ST-TLF in
CVDP, as shown in Fig. 5. The results of 17 CVDP experiments show
that the SMOTE technique has promoted the defect model in only
six experiments, but not in the remaining experiments, indicating that
SMOTE is not widespread to improve the accuracy of CVDP. In the
future, we will continue to investigate the effect of class rebalancing
technology on CVDP defect prediction.

7. Threats to validity

We now identify some potential threats to the validity in this paper,
covering external validity, internal validity, and construct validity.
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7.1. Internal validity

In this study, we performed some comparative experiments with
defect classifiers. We have not adjusted the parameters of these models.
For RQ2, we implemented eight classifiers. When performing CVDP
experiments, we used the default parameters provided by Weka. Since
the objective of this investigation is to test the generalization ability
of our framework to multiple classifiers, adjusting the parameters for
the classifier may reduce the reliability of our survey results. For RQ3,
we replicated 12 defect models as control methods by benchmark
CrossPare implemented by Herbold et al. [16]. These approaches are
recommended by Amasaki, where they show better performance in
CVDP than in the baseline [33]. Considering these models, we used
parameters provided in previous studies to guarantee the comprehensi-
bility of our contrast experiments. Also, we used random forest which is
insensitive to parameters as the base classifier of our framework [96].
If the parameters for the defect model are adjusted in this investigation,
the experimental results will change minimally.

We employed the Jureczko dataset [46] in the experiment, where
the defect prediction features provided by Ferenc et al. [48]. The defect
features consist of 60 different kinds, including source code and code
duplication metrics. If other features (process metrics and semantic
information) are applied, better or worse prediction results may be
obtained, which have not been validated.

7.2. External validity

Our approach study relies on one defect prediction scenario (i.e.,
CVDP). However, there are a variety of defect prediction scenarios in
the literature (e.g., CPDP and heterogeneous defect prediction), and
the effectiveness of our method is unknown in these scenarios. In the
future, we will work to achieve the effectiveness of our approach in
CPDP.

The approach presented in this paper has only been validated by
the Jureczko dataset [46,48]. The project for this dataset uses object-
oriented encoding language (JAVA), and there are no other encoding
languages (C, C++, Python, and so on). Replication studies on other
projects that developed with C, C++, or Python may prove fruitful.

There are many research toolkits employed to implement machine
learning, e.g., Weka [65], R [66], MATLAB [67], Scikit-learn [68]. In
this study, we constructed baseline and control methods using Weka.
When considering reproducing the study with other toolkits, results
that slightly deviate from the current conclusions may be obtained.

Also, Forrest from the PROMISE library was a small-scale software
product, and the number of defect instances (ratios) of the three
versions were 6 (16.67%), 29 (17.24%), and 32 (6.25%), respectively.
But in the experiment, we abandoned it because it did not meet
condition 3. Actually, we performed complementary experiments for
Forrest. Our framework ST-TLF and some control methods we repli-
cated (e.g., Pater15) did not successfully predict potential defects in
the target version. This may be the overfitting problem caused by
small samples in machine learning, which is a typical few-shot learning
problem [99]. Therefore, we do not ensure the generalization ability of
our ST-TLF framework in small software products like Forrest. In future
work, we will try our best to solve this problem.

7.3. Construct validity

In this study, two factors threaten the structural validity of our
ST-TLF, involving class imbalance and performance evaluation. To
evaluate the validity of ST-TLF, we selected three composite indicators,
avoiding the structural threat of the study results. Class imbalance can
reduce the accuracy and reliability of the defect model in CVDP, as
shown in the result analysis. To objectively explain the performance
of the method we provided, we have not taken relevant strategies
to address the problem in CVDP. However, in Section 6, we initially
discussed the impact of SMOTE on our framework through experiments,
the results of which are not ideal. In future work, we will continue to
focus on this issue.
14
8. Summary and prospect

Although CVDP is a practical scenario compared to IVDP and CPDP,
some sticky problems may lead to the decreased accuracy and reliabil-
ity of the defect models, where we are mainly concerned with concept
drift in CVDP. To solve concept drift, we propose a novel transfer
framework that consists of dataset matching techniques and instance-
based transfer learning, which is called ST-TLF. For evaluating the
performance of ST-TLF, we used the random forest and BayesNet as
the base classifiers to investigate three research problems, involving
the accuracy of matching training set, the generalization of ST-TLF
in different classifiers, and the performance of ST-TLF in CVDP. The
experimental results on ten open source projects (a total of 37 ver-
sions) from public datasets show that our ST-TLF can accurately match
the best training set for the current version and effectively solve the
problem of concept drift, improving the performance of CVDP. Also, in
the comparative experiment, we selected 12 control methods, of which
P15-NB is the proposed best defect model. Our framework combined
with the underlying classifier performs better than P15-NB in CVDP.

Class imbalance is a common problem in defect prediction. In this
study, we found that class imbalance drift between versions can impair
the reliability of defect models in CVDP. Although the ST we proposed
can avoid class imbalance drift by matching the best training for the
current version, it does not fundamentally solve this problem. Prior
work raised concerns regarding class imbalance and proposed solutions,
e.g., SMOTE. In the discussion, we used the SMOTE method under the
ST-TLF framework, whose results on 16 CVDP experiments show that
the SMOTE does not significantly improve the performance of defect
prediction in the CVDP. In future work, we will continue to explore
concept drift to improve the accuracy of defect prediction in CVDP.
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