CITYWALK: Enhancing LLM-Based C++ Unit Test Generation via
Project-Dependency Awareness and Language-Specific Knowledge

YUWEI ZHANG and QINGYUAN LU, Institute of Software, Chinese Academy of Sciences; University of
Chinese Academy of Sciences, China
KAI LI1U, Shanghai Stock Exchange Technology Co., Ltd., China

WENSHENG DOU” and JIAXIN ZH U*T, Institute of Software, Chinese Academy of Sciences; University
of Chinese Academy of Sciences, China

LI QIAN, CHUNXI ZHANG, and ZHENG LIN, Shanghai Stock Exchange Technology Co., Ltd., China

JUN WEI*T, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences,
China

Unit testing plays a pivotal role in the software development lifecycle, as it ensures code quality. However, writing high-quality
unit tests remains a time-consuming task for developers in practice. More recently, the application of large language models
(LLMs) in automated unit test generation has demonstrated promising results. Existing approaches primarily focus on
interpreted programming languages (e.g., Java), while mature solutions tailored to compiled programming languages like C++
are yet to be explored. The intricate language features of C++, such as pointers, templates, and virtual functions, pose particular
challenges for LLMs in generating both executable and high-coverage unit tests. To tackle the aforementioned problems, this
paper introduces CITYWALK, a novel LLM-based framework for C++ unit test generation. CITYWALK enhances LLMs by
providing a comprehensive understanding of the dependency relationships within the project under test via program analysis.
Furthermore, CITYWALK incorporates language-specific knowledge about C++ derived from project documentation and
empirical observations, significantly improving the correctness of the LLM-generated unit tests. We implement CITYWALK
by employing the widely popular LLM GPT-40. The experimental results show that CITYWALK outperforms current state-of-
the-art approaches on a collection of ten popular C++ projects. Our findings demonstrate the effectiveness of CITYWALK in
generating high-quality C++ unit tests.

CCS Concepts: « Software and its engineering — Software testing and debugging.

Additional Key Words and Phrases: Unit Test Generation, Large Language Model, Program Dependence Analysis, Language-
Specific Knowledge, Retrieval-Augmented Generation

* Affiliated with Nanjing Institute of Software Technology, University of Chinese Academy of Sciences, Nanjing, China.
Corresponding authors

Authors’ Contact Information: Yuwei Zhang, zhangyuwei@iscas.ac.cn; Qingyuan Lu, lugingyuan22@otcaix.iscas.ac.cn, Institute of Software,
Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China; Kai Liu, kliu@sse.com.cn, Shanghai Stock Exchange
Technology Co., Ltd., Shanghai, China; Wensheng Dou, wsdou@otcaix.iscas.ac.cn; Jiaxin Zhu, zhujiaxin@otcaix.iscas.ac.cn, Institute of
Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China; Li Qian, lqian@sse.com.cn; Chunxi
Zhang, chxzhang@sse.com.cn; Zheng Lin, zhenglin@sse.com.cn, Shanghai Stock Exchange Technology Co., Ltd., Shanghai, China; Jun Wei,
wj@otcaix.iscas.ac.cn, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7392/2025/8-ART

https://doi.org/10.1145/3763791

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0009-0008-1016-7361
https://orcid.org/0009-0000-8024-1143
https://orcid.org/0009-0008-7988-8298
https://orcid.org/0000-0002-3323-0449
https://orcid.org/0000-0002-0905-2355
https://orcid.org/0000-0001-8270-2425
https://orcid.org/0000-0003-0594-8995
https://orcid.org/0009-0005-0710-7593
https://orcid.org/0000-0002-8561-2481
https://orcid.org/0009-0008-1016-7361
https://orcid.org/0009-0000-8024-1143
https://orcid.org/0009-0008-7988-8298
https://orcid.org/0000-0002-3323-0449
https://orcid.org/0000-0002-0905-2355
https://orcid.org/0000-0001-8270-2425
https://orcid.org/0000-0003-0594-8995
https://orcid.org/0000-0003-0594-8995
https://orcid.org/0009-0005-0710-7593
https://orcid.org/0000-0002-8561-2481
https://doi.org/10.1145/3763791
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763791&domain=pdf&date_stamp=2025-08-26

2 + Zhangetal

1 INTRODUCTION

The C++ programming language, widely renowned for its efficiency, scalability, and security, plays a crucial
role in developing basic software such as operating systems and compilers. As these systems increase in size,
however, ensuring code reliability becomes increasingly challenging in the fast-evolving software development
process [23]. Unit testing [8, 29] serves as a fundamental technique in this pursuit, providing a robust means of
validating individual software units in isolation from the rest of the system. By independently verifying each unit,
developers can detect and rectify defects early in the software development lifecycle, thereby improving overall
code quality. Nevertheless, writing high-quality C++ unit test cases becomes a challenging and time-consuming
task for developers in practice when the complexity of software systems grows [14]. More recently, the application
of large language models (LLMs) in unit test case generation has been extensively explored in both academia and
industry [2, 3, 33, 41, 51]. For instance, Yuan et al. [51] conducted a comprehensive evaluation of using ChatGPT
in automatically generating unit test cases for Java projects via both quantitative analysis and user studies. Their
findings indicate that the ChatGPT-generated test cases exhibit commendable readability, thereby affirming the
feasibility of an LLM-based technological approach.

Although LLM-based approaches have achieved remarkable performance in unit test case generation, the test
code generated by LLMs still encounters issues, including compilation errors and assertion failures. Furthermore,
current state-of-the-art approaches and tools [6, 30, 32, 51] primarily concentrate on interpreted programming
languages such as Java and Python, with limited mature solutions yet available for generating unit test cases
tailored to compiled programming language like C++. Particularly, the intricate language features of C++ present
substantial challenges in utilizing LLMs to generate executable unit test cases with high coverage. To underscore
the limitations of LLMs in the generation of C++ unit test cases, Figure 1 illustrates three motivating examples
that demonstrate typical scenarios in which the most advanced LLM GPT-40, when provided with the basic
prompt!, fails to generate correct unit test cases for the corresponding focal methods (i.e., the methods under
test) in the open-source C++ projects.

e Limitation 1: Missing code-agnostic contexts pertaining to the project configuration dependen-
cies for LLMs to generate compilable code. Existing LLM-based approaches [6, 51] leverage static
analysis techniques to extract code dependency contexts related to the focal method from the focal class
file, which aims to ensure the syntactic correctness of LLM-generated test code. However, LLMs may
also produce compilation errors due to a lack of awareness regarding dependencies specified within the
project’s configuration. As shown in the Error Message output by Failed Test Case @, the test code
generated by GPT-4o fails to compile because the configuration file for the tinyxml2 project does not
include the usage of the third-party library gtest. Given the absence of such code-agnostic contexts
(e.g., the availability of specific programming framework) in the provided basic prompt, there is a high
likelihood that GPT-40 will default to directly using the GoogleTest framework to generate C++ unit
test cases for tinyxml2.

e Limitation 2: Lack of cross-file intended behavior in the corresponding project as guidance for
LLMs to generate correct assertions. Considering the example of Focal Method (b), the functionality
of the Translate method in the tag class file is to invoke the relevant interface methods provided by
the Directives class to translate various YAML tags in accordance with their respective types. In this
instance, the variable type is defined within the header file of tag, while the contextual information
related to the invoked interface methods resides in the class file of Directives. Given that these cross-file
dependency contexts within the yaml-cpp project are not encompassed in the basic prompt, comprehend-
ing the functional intent of Translate alone does not sufficiently assist GPT-40 in grasping the usage

1Following ChatTester [51], the basic prompt comprises the task description for unit test generation, a requirement to understand program’s
intent, the source code of the focal method, and the dependency contexts within the focal class file.

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK

Focal Method (a)

\
I

i

'

#include {mesconsacioaonoemasasamaog 3 H

tinyxml2/tinyxml2.cpp input generate #include , !
void — —_— ! H
ol 0f class { i !
if (_flags & NEEDS_DELETE) { : H H
delete [] _start;) : !

) GPT-40 with } : :
_flags = 0; Basic Prompt i :
_start= » Error 5 !

) _end = run output [fatal error:'gtest/gtest.h' file not found] |
Compiler |

Failed Test Case @ : Compilation Error

Focal Method (b)

yaml-cpp/src/tag.cpp

const std::string (const Directives& directives) {

Failed Test Case @ : Assertion Failure

(TagTranslateTest, PrimaryHandleTag) {
YAML::Mark mark;
YAML::Token token(YAML::Token::TAG, mark);

switch (type) { input generate token.data = YAML::PRIMARY_HANDLE;
case VERBATIM: — —_— token.value = 3
return value; YAML::Tag tag(token);
case PRIMARY_HANDLE:) TestDirectives directives;
return directives. (") + value; GPT-40 with (tag. (directives),), <=
Basic Prompt } :
default: 1
i
(false) . Error Messag ;
throw std::runtime_error() run output [Failure. Expected equality of these --!

values: tag.Translate(directives),

Compiler which is "str", "tag:yaml.org,2002:str"]

Focal Method (c) Failed Test Case @ : Incorrect Mocking

can be marked ‘override']

i
i
i
yaml-cpp/src/convert.cpp) class : public Node { :
” input generate publie: !
bool convert<bool>::decode(const Node& node, bool& rhs) { > > MOCK_METHOD(bool, IsScalar, (), (const, override)); <----~- | '
! 4 ’ »), (CONSt, 2 2));
st o MOCKZMETHOD (std: string, Scalar, (), (const, override)); 4---i |
% ! i
static const struct { . |
std::string truename, falsename; GPT-4° with 1 :
} names[] = { Basic Prompt , Error Messag i !
i
run output [error: only virtual member functions 1
1
]
i
i

Compiler

Fig. 1. Limitations of LLMs in Generating C++ Unit Test Cases.

of Translate. Consequently, Failed Test Case @ is unable to configure the correct YAML tag type to
align with the target translation pattern. This misalignment causes the actual outcome to deviate from the
expected result, consequently triggering an assertion failure.

Limitation 3: LLMs struggle to correctly generate complex test code without an understanding
of C++ language-specific domain knowledge. In practice, the focal method may need to interact with
complex data objects defined in dependent class files. In such cases, developers typically create virtual
objects using mocking techniques [31, 42] to simulate the behavior of real external dependencies. However,
to effectively generate complex test code, LLMs must grasp the principles and applicable scenarios related
to mocking [38, 39]. In Focal Method (c), decode needs to return a boolean value by verifying whether
node is a scalar. As illustrated in Failed Test Case ®, GPT-40 attempts to simulate a Node class object to
mimic the test input. The Error Message indicates that the methods invoked on node are non-virtual
functions. As a consequence, GPT-40 generates test code that contains compilation errors, stemming from
an insufficient understanding of such complex language feature of C++ mocking.

To tackle the aforementioned limitations, we propose CITYWALK, a novel framework designed to enhance the
capabilities of LLMs in generating high-quality C++ unlt Test cases by providing project-dependencY aWAreness
and Language-specific Knowledge. Our key insight lies in enabling LLMs to act as skilled developers, leveraging

ACM Trans. Softw. Eng. Methodol.

4

Zhang et al.

specialized knowledge and global comprehension of project dependencies to perform unit testing effectively. The main
ideas of CITYWALK are outlined as follows:

¢ Empowering LLMs with an awareness of project-level dependency relationships through pro-
gram analysis. The project dependencies employed by CITYWALK are categorized into two types:
cross-file data dependencies and configuration dependencies. To conduct cross-file data dependency
analysis, CITYWALK initially performs static analysis to identify the header and source code files within
the project that exhibit a dependency-chain relationship with the focal class file. Subsequently, CITY-
WALK utilizes the abstract syntax tree (AST) to extract the relevant cross-file data dependency contexts
associated with the focal method from these identified files. Furthermore, our observations indicate that
when the project under test necessitates specific versions of the compilation environment or third-party
libraries, the probability of encountering compilation errors in the LLM-generated unit tests increases
substantially. By analyzing project’s configuration files, CITYWALK gathers critical information regarding
the third-party library usage and the requirements of the compilation environment. These configuration
dependencies are explicitly provided to LLMs to reduce the occurrence of compilation errors.

e Augmenting LLMs with intention-guiding information related to the focal method via a hybrid
retrieval strategy. Software repositories often contain extensive documentation, such as requirements
specifications and API references [19]. Utilizing this natural language information can further aid LLMs
in understanding the functional logic of the focal method. Moreover, when the focal method has long
dependency chains or complex initialization of dependent objects, incorporating relevant code snippets,
especially those that invoke the focal method or demonstrate its initialization, into the prompts can
greatly help guide LLMs in understanding the real-world usage patterns of the focal method, thereby
compensating for the limitations of static analysis techniques. To facilitate the retrieval of both natural
language documentation and programming language code snippets, CITYWALK employs a hybrid strategy
designed to efficiently extract intention-guiding information from bimodal sources, ensuring an accurate
and contextually relevant retrieval process.

e Prompting LLMs with step-by-step instructions and language-specific knowledge derived from
empirical observations. CITYWALK decomposes the unit test generation task into smaller, more specific
subtasks with structured step-by-step instructions. The goal is to streamline the generation of C++ unit
test cases by providing LLMs with detailed procedural guidance. Within CITYWALK, LLMs are utilized to:
(1) infer both the intention and dependencies of the focal method; (2) generate an entire test file for the
focal method by leveraging the provided guidance; and (3) refine the generated test cases using language-
specific knowledge. To perform Step (3), we further conduct an empirical analysis of the LLM-generated
failed test cases for building language-specific domain knowledge tailored to C++. This knowledge-driven
approach assists in guiding LLMs to emulate experienced developers in generating accurate test cases.

We implement a prototype of CITYWALK using GPT-40 and evaluate it on a collected benchmark comprising

1288 focal methods from ten C++ projects. We conduct a comparative analysis of CITYWALK against seven state-
of-the-art baselines. Our evaluation demonstrates that CITYWALK outperforms all baselines in both compilation
success rate and code coverage. Our contributions can be summarized as follows:

e We present the first attempt at enhancing the capabilities of LLMs for C++ unit test generation by
leveraging project-dependency awareness and language-specific knowledge, enabling LLMs to function
like human developers in writing correct unit test cases.

e We thoroughly evaluate CITYWALK on a diverse collection of open-source projects, thereby substantiating
the effectiveness of each component within CITYWALK. Furthermore, we illustrate its capacity to
generalize in generating high-quality unit tests across various LLMs.

e We publicly release the artifacts [53] of CITYWALK on Zenodo to facilitate the reproduction.

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 5

Article Organization. The remainder of this paper is organized as follows: Section 2 introduces in detail the
proposed framework. Section 3 and Section 4 provide the experimental setups and results of our research. Section 5
presents multi-perspective discussions and discloses the threats to the validity of our approach. Section 6 describes
the related work. Section 7 concludes with research findings and future directions.

2 METHODOLOGY

In this paper, we introduce CITYWALK, a novel LLM-based framework for C++ unit test generation that addresses
the limitations outlined in Section 1. As illustrated in Figure 2, CITYWALK consists of five stages designed to
enhance LLMs in generating high-quality C++ unit test cases. It effectively integrates the strengths of program
analysis with retrieval-augmented strategies, empowering LLMs with developer-like capabilities through three
key aspects of guidance.

7~
@..-.-.-.-.-.-._._._._._._.-.-.-.-.-.-....-.-.-.-.-: IRREEEIEIIEEI . i . !
! Project Repository Pre-Processing !
1 1
\ Configuration Files Source Code Files Documentation Files Content Chunks Knowledge Base |
! navigate segment vectorize Docs Code !
! —_—> + + Em— e !
1 1
i i

) A PR SRS PSP MU EUSRPUERPY FIPR A
(@) T, i_id_e_niif_y [PN SRR PR i._.re_n.“'_“._.l._. -
@ i semantic i

i Project Cont c :
: onfiguration ross-File Data !
. Dependency e — ()
L

Query: Description of
[focal method name]
in [focal class namel.

Extraction

Y 1
. . .

o basic ! Focal Method & Focal '
ML 5 1

prompt ; Class Dependencies :

1
1
1
1
‘[Failed LLM
1
1
1
1
1

1

1

1

Cases 1
Language-Specific ;

summarize Domain Knowledge ;
1

1

exact match
retrieval

—[Keyword: [focal method_name]

Retriever Intention Context Retrieval

step-by-step

! ' ;

1 _— .

i i three-phase Unit Test '

i i S instruction fixing Generation !

i Empirical Observation i Prompting Content !
(B m e mmmeme e TSNS . LM Generated Test Cases _ _ _ _ _ . _._._._._. ®)
@)

Fig. 2. Overview of CITYWALK.

2.1 Task Formulation

We first provide a formal definition of the unit test generation task. Let Repo = {SC, C,D} be the project repos-
itory, which includes a set of source code files SC = {scy, scy,...sc;}, configuration files C = {cy, g, ...cj},
and documentation files D = {dy, dy, ...dy }. The methods within Repo are denoted as M = | J .cgc M(sC), where
M(sc) = {my,my;...,m, } is the set of methods in sc. Given a focal method msoca1 € M(SCfoca1) associated with
the focal class file scsoca1, the objective of CITYWALK is to generate unit test case(s) TC for mgocq1 through the
following stages:

@ Project Repository Pre-Processing: This stage involves navigating through all files in Repo, segment-
ing the selected files into chunks, and storing the vectorized chunks in the knowledge bases KB.oqe and
KBaocs-

@ Project Dependency Extraction: In this stage, we identify configuration dependencies within C and
cross-file data dependencies between scsoca1 and SC via program analysis.

ACM Trans. Softw. Eng. Methodol.

6 + Zhangetal

® Intention Context Retrieval: This stage focuses on retrieving relevant code snippets from KBo4e and
documentation from KBg,cs as intention contexts utilizing a hybrid strategy.

@ Empirical Observation: In this stage, we analyze the LLM-generated failed test cases and summarize
the language-specific knowledge derived from empirical observations.

® Unit Test Generation: This stage involves prompting the LLM with step-by-step instructions to generate
test cases TC «— LLM(PROMPT), where PROMPT includes the basic prompt supplemented with additional
guidance from Stage @-@, and incorporates a three-phase post-processing approach for error-fixing.

2.2 Project Repository Pre-Processing

In the context of program analysis-based and retrieval-augmented unit test generation, this stage involves two
preliminary processes for pre-processing the given focal method and corresponding project. These processes are
essential to help LLMs understand the code structure and its dependencies, thereby facilitating precise analysis
and effective retrieval to support test case generation.

2.2.1 Structured Focal Context Extraction. Given the input focal class file, CITTYWALK begins by parsing the
source code into an AST using Clang?. For each focal method, CITYWALK then gathers the essential focal
contexts in a structured format, providing the foundational information necessary for project dependency
analysis. Figure 3 illustrates the structured focal contexts for decode in the convert class, preserving the
complete code implementation of the focal method, along with imports from C++ standard libraries, third-party
libraries, user-defined header files, namespace declarations, and signatures of other methods within the focal
class.

i
yaml-cpp/src/convert.cpp | #include
i

#include
namespace

bool convert<bool>::decode(const Node& node, bool& rhs) { 1 == === === - == - - o s oo oo oo e e -

I

I

I

'

i

I i

! if (Inode.)] E namespace { !

' return " bool (char ch) {} 1

| Source Code of static const struct {] bool (char ch) {} Namespace Declaration |

' Focal Method std::string truename, falsename; 11 4 char (char ch) {} !

' } names[] = { i std::string (const std::string& str) {} & !

\] template <typename T> i

! p | bool (const std::string& str, T func) {} Method Signature H

! } " bool (const str::string& str) {} !

'

' 1 i

i

Fig. 3. lllustrative Example of Structured Focal Context for the decode Method in the convert Class.

2.2.2 Knowledge Base Construction. Retrieval-augmented generation (RAG) allows LLMs to leverage information
from external knowledge bases for reducing hallucinations [5]. To enhance the LLM’s understanding of the
focal method during unit test generation, CITYWALK constructs knowledge bases using the documentation
and source code from the project repository. First, CITYWALK scans all semantically relevant files within the
repository, including project documentation (e.g., requirement specifications) written in natural language and
source code files in programming languages. Files that do not contribute semantic knowledge (e.g., configuration
files) are excluded from constructing knowledge bases. CITYWALK then applies text segmentation strategies to
slice the documentation and code files. For instance, markdown files can be segmented into text chunks based on
title levels, while source code files are divided into method-level code chunks. Additionally, natural language
comments within the code are extracted separately as text chunks. To facilitate efficient semantic retrieval and
similarity calculations, CITYWALK utilizes an embedding model BGE [46] for the vectorization of segmented

Zhttps://clang.llvm.org

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK . 7

(a) Configuration Dependency Identification I (b) Cross-File Data Dependency Analysis

yaml-cpp/CMakeLists.txt ' yaml-cpp/srciconvertcpp ____--= > yaml-cpp/node/convert.h

(YAML_USE_SYSTEM_GTEST ! #include "yami-cpp/node/convert h'- - - - == - #include :
" . ’
il namespace { e
" bool convert<bool>::decode(const Node& node, bool& rhs) { v
yaml-cpp/test/CMakeLists.txt i it (Inode. 0) yaml-cpp/node/node.h
|

1
'
'
'
'
I
'
'
'
'
I
'
'
I
'
'
1
- |
i [YAML_USE_SYSTEM_GTEST| i bool () const { return () == NodeType::Scalar;)| |
I

B
else() lf } const std:string& () const; Cross-File Data |
(nol Structured Focal Context Dependencies 1
S{CMAKE_CURRENT SOURCE DIR} N oissszoszozsozssogeszzzsozoosszzszsszoozoozszsszszsszsszzozzszszzszocfozzzozzod
${CMAKE_CURRENT_BINARY_DIR}) i T '
CMAKE_CURRENT_SOURCE_DIR} :: GPT-40 guided by the Project Dependencies 1
) :: Passed Test Case |
endif() N) i) v !
Configuration Dependencies " GPT-40 with ~ . " H
w N e e T B h Basic Prompt class : public Node {)
(yaml-cpp-tests Third-Party Library Usage: : " public: '
PRIVATE Threads, gtest-1.11.0, gmock | " virtual bool () const { return Node:: O} \
Threads::Threads| Lo u Failed Test Case @ virtual std::string () copst {'return\Node:: 0y

- ' .
DG i Environment Requirement: C++ 11 g H] B A 1
gtest [.._.._..4 a class : public Node { class : public VirtualNode { il
gmock) " public: public: H
i MOCK_METHOD(bool, IsScalar, (), (const, override)); MOCK_METHOD(bool, 155l (), (const, override)); !
if (NOT DEFINED CMAKE_CXX_STANDARD) ' MOCK_METHOD(std: string, Scalar, (), (const, override)); MOCK_METHOD(std:string, sOfconst, override)); 1
(yaml-cpp-tests PROPERTIES|CXX_STANDARD 11) HI % H

'

'
'
'

endif() i

n (c) Working Example for the Failed Test.Case @ within Figure 1

Fig. 4. lllustrative Example of Project Dependency Extraction.

text chunks, storing the resulting vectors in KBgocs. The segmented code chunks are directly stored in KBcoqge for
exact match retrieval without vectorization.

2.3 Project Dependency Extraction

LLM-generated test code often fails to compile, typically due to missing dependencies or specific version require-
ments of the compilation environment. This limitation compels LLMs to make assumptions about the usage
of undefined variables or methods based on their reasoning [55]. To mitigate compilation errors, CITYWALK
enables LLMs to be aware of relevant dependency contexts at the project level through program analysis. The
project dependencies extracted by CITYWALK are classified into the following two categories:

e Configuration Dependencies: As illustrated in Figure 4(a), CITYWALK identifies both the usage of
third-party libraries and the compilation environment requirements of the project under test.
CITYWALK first parses the CMakeLists files in the root and test dictionaries using regular expres-
sions to extract configuration dependencies based on keyword-matching, including the command like

€. libraries. This process captures details about dependent third-party libraries and their
versions(e.g., gtest-1.11.0) as well as the compilation environment requirement (i.e., C++ 11) specified
through set targe . The parsed dependencies (framed by the green rectangle) are stored

in a structured format that facilitates seamless integration with LLM prompts. This enables LLMs to
understand the necessary code-agnostic dependencies of the project under test, which is essential for
generating compilable test code.

e Cross-File Data Dependencies: In addition to the focal contexts utilized by existing LLM-based ap-
proaches [6, 51], CITYWALK conducts data dependency analysis via AST to gather cross-file dependencies
as contextual guidance, helping LLMs in reasoning accurately with sufficient information. CITYWALK
first navigates all files with specific suffixes (i.e., “.cpp” and “h”). In C++, user-defined header files are
typically imported using #include "".Thus, CITYWALK utilizes program analysis to filter out files with
direct dependencies on the focal class file based on the include field information. This analysis process is
recursive, and CITYWALK limits the extracted dependency chain to two layers. This design is primarily

ACM Trans. Softw. Eng. Methodol.

8 + Zhangetal

motivated by the context window constraints of employed LLMs, ensuring that the length of extracted
contextual dependencies remains within the model’s processing capacity. Subsequently, CITYWALK
employs data-flow analysis on the AST nodes of the invoked methods within the focal method to extract
cross-file data dependency contexts from the filtered files. As shown in Figure 4(b), CITYWALK extracts
the dependent contexts (framed by the red rectangle) for the invoked methods (i.e., IsScalar and Scalar)
in decode from the Node class through a two-layer relationship (i.e., convert.cpp --> convert.h --»
node. h). Furthermore, Figure 4(c) presents a working example of how cross-file data dependencies can
guide LLMs in generating executable test code for Failed Test Case ©® shown in Figure 1. By incorporating
additional contextual information from Node and prompting LLMs with the language-specific knowledge
of gmock, GPT-40 derives a class and declares virtual functions, successfully simulating the behavior of
the invoked methods within decode and generating accurate test inputs.

2.4 Intention Context Retrieval

To better guide LLMs in understanding the program intention of the focal method, CITYWALK employs RAG to
generate effective unit test cases by leveraging the project documentation and source code stored in the knowledge
bases described in Section 2.2.2. The natural language documentation provides functionality requirements of
the focal method as articulated by developers, while the source code snippets within the project offer LLMs
real-world examples of focal method invocation and initialization. This approach mitigates issues related to focal
methods that have dependency chains longer than two layers or are complex to initialize. Specifically, CITYWALK
employs a hybrid retrieval strategy that conducts knowledge queries in two stages. For KBgocs, the process
begins by generating a corresponding query statement (as shown in Figure 2) based on the name of the focal
method and the class to which it belongs. The embedding model BGE is then utilized to convert this query into a
vector representation, capturing its semantic information and enabling alignment with the content of KBgocs in
vector space. Using the retrieval algorithms provided by the vector database Faiss [11], the similarity between
the query vector and the vectors in KBgoes is computed, employing cosine similarity to identify the vectors
that are most similar to the query vector. Based on the similarity scores, the top-2 most relevant responses are
selected as retrieval results. This setup ensures retrieval accuracy while providing sufficiently detailed guidance
information, assisting in the generation of more comprehensive test cases. Preliminary practices indicate that
semantic retrieval for code snippet examples often yields imprecise results [4, 48]. To optimize retrieval from
KBcode, CITYWALK adopts an exact match strategy based on the focal method’s signature, including its name and
parameter types, extracted through static analysis. Specifically, CITYWALK first utilizes the regular expression:
r*\b' + re.escape(focal_method_name) + r*\s*\([*)]*\)"' to identify candidate method invocation or
initialization examples from KB¢oge. Following this, a verification step filters out candidate examples with
mismatched parameter counts or types, ensuring only those that exactly match the focal method’s signature are
retained: For example, focal_method_name (double) will not match focal_method_name(int). This two-step
strategy guarantees accurate retrieval while effectively distinguishing between similar method variants.

2.5 Empirical Observation

In addition to the extracted project dependencies and retrieved intention contexts, CITYWALK further provides
error patterns, along with their corresponding solution guidelines, as language-specific domain knowledge. This
knowledge tailored to C++ programming language is used to prompt LLMs with instructions aimed at mitigating
common errors in the task of unit test generation. To achieve this, we conduct an empirical study to evaluate
the correctness of C++ test cases generated by existing state-of-the-art LLMs through quantitative analysis. The
procedure for our empirical investigation is outlined as follows:

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK .« 9

e Empirical Setups: (1) Benchmark. We adopt a diverse set of real-world open-source C++ projects
collected from GitHub, with the selection criteria and detailed statistics provided in Section 3.2. (2) Subject
LLMs. We select two state-of-the-art LLMs to evaluate their capabilities in generating high-quality C++
unit test cases based on our collected benchmark: the open-source LLM DeepSeek-V3 [10] and the closed-
source LLM GPT-40 [22]. (3) Prompt Design. As suggested by Yuan et al. [51], we design our prompt
by closely following common practices in recent unit test generation research. The prompt consists of
a natural language description that explains the task to the LLM, along with the code context, which
includes the focal method and other relevant contextual information (e.g., the fields and method signatures
within the focal class).

¢ Experimental Procedure: For each project in the benchmark, we clone its repository from GitHub
and extract relevant information to support prompt construction. We query the selected LLMs using our
designed prompt for each focal method and consider the test cases generated by the LLMs as the output.
We use the official API of each LLM with the configuration set to generate the top-1 chat completion
choice and a sampling temperature of 0. The generated test cases are then placed in the test directory of
the project, where we attempt to compile and execute them for subsequent analysis. In our experimental
design, we evaluate the correctness of the generated test cases from three perspectives. First, we use
the Clang parser as a syntax checker to verify the syntactic correctness of the generated test cases.
Next, we measure the correctness of compilation and execution by verifying whether the generated test
cases compile successfully and run without errors. Error messages produced during compilation and
execution are automatically extracted for analysis. To examine the failed test cases generated by the
two evaluated LLMs, the first two authors manually classified the errors based on the corresponding
compiler-generated messages. This empirical process involved over 1000 failed test cases and required
approximately five hours. To ensure consistency and accuracy, the two authors collaboratively reviewed
and resolved discrepancies through discussion, reaching consensus on all classification results. In addition,
we employ 11vm-cov? to collect both line and branch coverage, providing an assessment of the sufficiency
of the generated test cases.

e Error Analysis: To better understand the limitations of existing LLMs in C++ unit test generation, we
analyze common error patterns in the failed test cases generated by DeepSeek-V3 and GPT-40, with a
particular focus on their impact on compilation correctness. It is important to note that this analysis is
limited to compilation errors, which constitute a significant proportion of all errors and represent a
critical initial barrier to the successful execution and correctness of generated test cases. Specifically, we
automatically categorize each failed test case based on the associated compilation error message. Table 1
presents the distribution of compilation errors observed in the test cases generated by the evaluated LLMs.
The “Frequency” column reports the number of occurrences for each error pattern across DeepSeek-V3,
GPT-40, and their combined total. For clarity, only error patterns that appeared more than ten times are
included in the table. As shown in Table 1, LLM-generated test cases exhibit a diverse range of compilation
error patterns. The most common errors are related to undefined symbols, typically caused by references to
unresolved identifiers such as undeclared methods or variables. Two other prevalent error patterns include
access violations and type mismatches. Access errors generally result from invalid attempts to reference
class members, while type errors stem from incompatible expressions or incorrect type assignments.
Additionally, we observe that GPT-40 frequently produces test code with incorrect namespace usage,
which is not present in DeepSeek-V3 outputs. This quantitative analysis reveals persistent patterns of
compilation errors encountered by LLMs during unit test generation and provides valuable insights that
inform the design of our mitigation strategies.

3https://llvm.org/docs/CommandGuide/llvm-cov.html

ACM Trans. Softw. Eng. Methodol.

10 « Zhangetal.

Table 1. Compilation Error Breakdown for LLM-Generated Test Cases

Frequency
Error Pattern Error Description
DeepSeek-V3 GPT-40 Total

Undefined Symbols Error Missing or unresolved identifiers 351 382 733
Access Error Invalid access to class members 157 147 304
Type Error Type mismatches in expressions or assignments 140 161 301
Other Miscellaneous unclassified errors 91 76 167
Test Setup Error Failure during initialization of tests 51 99 150
Linker Error Cross-file linkage failure 92 32 124
Syntax Error Invalid syntax in C++ source files 18 59 77
Namespace Error Incorrect or missing namespace usage 0 45 45
Multiple Definition Error Duplicate symbols defined in different files 5 26 31
Template Error Invalid usage of C++ templates 1 9 10

Table 2. Language-Specific Domain Knowledge Derived from Empirical Observations

Category Guideline

(A.1) Import all necessary dependencies with the correct paths!

(A.2) Use only the C++ standard libraries, imported third-party libraries, and provided methods.
(A.3) If gtest is not allowed, directly call test methods from the main function.

(A.4) Use the correct namespace throughout the tests.

(A.5) Properly handle static members by accessing them using the class name.

(A.6) Avoid invoking private methods or accessing private fields defined in the program.

(A) Compilation Error

(B.1) Choose appropriate assertions for the pointer data type, clearly distinguishing between address and content comparisons.

(B) Execution Failure (B.2) For mocking (if using gmock), remember that only virtual methods can be mocked.

(C.1) Ensure coverage of true and false branches for each conditional predicate at least once.

(C) Poor Coverage (C.2) Utilize non-terminating assertions (e.g., EXPECT_*) to maximize code coverage.

e Solution Guidelines: As presented in the first column of Table 2, we manually group similar errors into
three high-level categories: (A) Compilation Errors, (B) Execution Failures, and (C) Poor Coverage.
While compilation errors constitute the majority, the LLM-generated test cases also exhibit execution
failures, often caused by incorrect assertions or flawed mocking code. Furthermore, poor coverage emerges
as a significant issue; largely attributable to the LLMs’ limited ability to exercise all conditional branches
and their misuse of assertion types. As listed in the second column of Table 2, we systematically summarize
solution guidelines for the corresponding error patterns based on empirical observations of the failed test
cases generated by the selected LLMs. As discussed in Section 2.3, Failed Test Case © can be addressed by
leveraging additional cross-file data dependencies along with Guideline (B.2). Specifically, we organize
Guideline (B.2) as instructions to prompt LLMs in a knowledge-driven manner for tackling the incorrect
mocking issue. In doing so, CITYWALK incorporates language-specific knowledge about mocking in
C++, including best practices for creating mock objects for virtual functions. In the case of the decode
method, CITYWALK provides LLMs with detailed guidance on how to correctly mock non-virtual member
functions in C++. By enhancing the LLM’s understanding of these language-specific nuances, CITYWALK
ensures the generated mocking code is both syntactically and semantically correct, effectively preventing
execution failures caused by improper mocking of non-virtual methods. While these guidelines do not

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 11

cover all error types, they are instrumental in guiding LLMs to produce high-quality test cases and mitigate
common errors in C++ unit test generation.

2.6 Unit Test Generation

Unit test generation is a complex task that poses significant challenges when generating high-quality test cases
from scratch with limited guidance. To address this, CITYWALK initially produces an entire test file for the
given focal method by following step-by-step instructions. Subsequently, CITYWALK corrects the failed test
cases using a three-phase rule-based fixing approach. As illustrated in Algorithm 1, we provide detailed process
overview as follows.

Algorithm 1: Unit Test Case Generation for a Focal Method.

Input: The given focal method: m¢oca1; The focal contexts: Contextsocal; The configuration dependencies: Depc; The
cross-file data dependencies: Depg; The intention contexts: Contextintent; The guidelines of language-specific
domain knowledge: Guidelinepg; The step-by-step instruction prompt: PROMPTstep; The syntactic error
fixing rules: Ruler,; The compilation error fixing rules: Ruler_; The error fixing prompt: PROMPTF

Output: The generated unit test case(s): TC

1 /" Initial Unit Test Case Generation via Step-by-Step Instructions */

2 /* Step 1: Program Understanding */
3 Intent, Depingredient < LLM(PROMsttep (mfoca1))

4 /* Step 2: Unit Test Generation */
5 TC < LLM(PROMPTstep (mfocal, Contextsocal, Depe, Depd, Contextintent, Intent, Depingredient))

6 /* Step 3: Test Case Refinement */
7 TC <= LLM(PROMPTstep(TC, Guidelinepy))

8 /* Post-Processing of the LLM-Generated Unit Test Cases */
9 TC « Rulef,(TC)

10 if Compiler(TC) is not PASS then

1 TC « Ruler,_(TC)

12 if Compiler(TC) is not PASS then

13 Contexterror < Compiler(TC)

1 TC « LLM(PROMPTE (TC, Contexterror)

15 return TC

2.6.1 Initial Unit Test Case Generation via Step-by-Step Instructions. As shown in Figure 5, the prompting content
for querying the LLM comprises four components: the task definition, the step-by-step instructions, the
contextual information, and the output format. Within the context of CITYWALK, the LLM is employed to
generate initial test cases by following steps:

(1) Program Understanding (Line 3): First, the LLM analyzes the provided source code of mgoca1 to grasp
its intended functionality, denoted as Intent. Next, the LLM extracts the key elements necessary for
generating effective test cases, creating a set of candidate keywords (i.e., Depingredient) that represent the
core dependent ingredients of mgocqi-

(2) Unit Test Generation (Line 5): Based on the Intent of m¢oca1, the LLM generates an initial test file for
Mfoca1 Dy utilizing the provided contextual information, which includes the focal contexts Contextsocal,
project dependencies Dep. and Depgq, intention contexts Contextintent. Additionally, the LLM matches

ACM Trans. Softw. Eng. Methodol.

12 « Zhangetal

You are a software testing expert specializing in generating high-quality C++ unit test cases. Your task is to produce a well-structured test file for the provided focal method (i.e., the method under test)
and its class dependencies, following these detailed step-by-step instructions. The project can be compiled in {environment_dependency} and uses {library_dependency} for third-party dependencies.

Step 1: Program Understanding

Analyze the provided C++ source code of the focal method (enclosed by <FOCAL_METHOD> and </FOCAL_METHOD?>) to understand its functionality, logic, and dependencies. Extract the key
elements necessary for generating effective test cases, creating a set of {Candidate Keywords} that represent the method's core dependent components.

Step 2: Unit Test Generation

Using the insights from Step 1, generate a comprehensive test file for the method {method_name} located in the file {file_name}. The following sources of information should guide the test generation:
1) Focal Contexts: the relevant class dependencies within the focal class file (enclosed by <FOCAL_CONTEXT> and </FOCAL_CONTEXT>).

2) Cross-File Dependencies: the project-level dependencies found in other source files (enclosed by <CROSS_FILE_DEP> and </CROSS_FILE_DEP>).

3) Intention Contexts: the intention-related contexts retrieved from project documentation and relevant code snippets (enclosed by <INTENT_CONTEXT> and </INTENT_CONTEXT>).

Note: please match critical details with {Candidate Keywords} and ensure an accurate understanding of the method's purpose.

Step 3: Test Case Refinement

Refine the initial test file to ensure high coverage and executable test cases. Use the provided language-specific domain knowledge tailored to C++ (enclosed by <DOMAIN_KNOWLEDGE> and
</DOMAIN_KNOWLEDGE?>) to enhance test effectiveness.

<FOCAL_CONTEXT> ... </FOCAL_CONTEXT>
<FOCAL_METHOD> ... </FOCAL_METHOD>
<CROSS_FILE_DEP> ... </CROSS_FILE_DEP>
<INTENT_CONTEXT> ... </INTENT_CONTEXT>
<DOMAIN_KNOWLEDGE> ... </DOMAIN_KNOWLEDGE>

Your final output should consist of the C++ unit test code only, with explanatory comments provided for each test case to clarify its purpose and logic.

Fig. 5. The Detailed Prompting Content for Generating Initial Test Cases for a Given Focal Method.

: 1
: Initial Test File Rules Fixed Test Cases Compiler Passed Cases !
1 - 1
i Fixing Phase @ syntactic compile © !
—_— - —_

i error fixing '
1

;

. Passed Cases Compiler Fixed Test Cases Rules Failed Cases | |
i Fixing Phase 9 © compile compilation (1] 1
| D — - O - — l
! error fixing !

; error '
. (1] message error fixing '
! | - °) 1
ll Fixing Phase © prompt i
i Failed Cases LLM Fixed Test Cases Output Test Cases |

| Youarea highly skilled developer and expert in C++ and testing frameworks. | will provide the content of an entire test file along with the related compilation
| error messages. Please analyze the situation carefully, identify the causes of the errors, and modify the test file to fix the errors.

|/l Test File Content:

1 {test_file}

/I Compilation Error Messages:

1 {error_message}

1

1

1

Prompt for Fixing Compilation Errors

Fig. 6. The Three-Phase Fixing Process for the LLM-Generated Unit Test Cases.

the contextual information with the extracted Depingredient to ensure an precise understanding of the
purpose of mgoca1-

(3) Test Case Refinement (Line 7): To enhance the effectiveness of the LLM-generated test cases TC, the LLM
refines the initial test file using the language-specific domain knowledge as guidelines Guidelinep,
ensuring the generation of high coverage and executable TC.

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 13

2.6.2 Post-Processing of the LLM-Generated Unit Test Cases. Inspired by ChatUniTest [6], CITYWALK applies
post-processing techniques to fix TC that contain syntactic and compilation errors. As shown in Figure 6, the
fixing process consists of the following three phases:

O Rule-based Syntactic Error Fixing: CITYWALK first utilizes Ruleg, to address the syntactic errors in
TC (Line 9). The syntactic error fixing rules include:
e Ensuring all brackets are closed through pattern matching.
e Removing all incorrect import statements by consolidating imports within Contextsocai.
o If the project uses gtest, retaining only one main function in the generated test file; otherwise,
ensuring each test method is called by the main function.
® Rule-based Compilation Error Fixing: Following Phase @, CITYWALK compiles the generated TC
and applies Ruleg, to the failed cases (Lines 10-11). The fixing rules include:
o Fixing incorrect usage of namespaces.
e Deleting non-existent import paths.
©® LLM-based Compilation Error Fixing: If compilation errors persist after Phase @&, CITYWALK tran-
sitions to a one-round LLM-based fixing phase (Lines 12-14). During this phase, CITYWALK collects
details about the failed test cases along with their associated compilation error messages to construct the
fixing prompt. The LLM is then prompted to analyze the root cause of the errors and make corrections to
the failed test cases. If any test case continues to fail compilation after this phase, it will be removed from
TC.

3 EXPERIMENTAL SETUP
3.1 Research Questions
To assess the effectiveness of CITYWALK, we raise the following two research questions (RQs):

¢ RQ1: How does CITYWALK perform in C++ unit test generation when compared to state-of-
the-art baselines? This RQ aims to evaluate the superior effectiveness of CITYWALK in comparison
to open-source code LLMs, closed-source general-purpose LLMs, and LLM-based unit test generation
approaches within the context of C++ unit test generation. To achieve this, we conduct a comprehensive
evaluation of CITYWALK against seven baselines using a collection of ten C++ projects. Furthermore, we
assess CITYWALK’s generalization capabilities using three additional LLM baselines, thereby enhancing
evaluation diversity.

e RQ2: How does each component impact the performance of CITYWALK? Since CITYWALK
introduces a step-by-step prompting strategy and leverages various contextual information and post-
processing techniques as guidance, this RQ seeks to analyze the contributions of each component through
an ablation study.

3.2 Benchmark

To comprehensively evaluate the quality of LLM-generated test cases, we construct a new benchmark consisting
of ten real-world open-source C++ projects from GitHub. As shown in Table 3, the first four projects are widely
utilized in recent studies on automated C++ unit testing [15, 26, 27]. Additionally, we crawl two practical projects
related to basic software: ninja (build system) and leveldb (database). To mitigate potential data leakage
concerns, we include four projects—json.cpp, glomap, papy, and mlx—all created after the GPT-40 knowledge
cutoff date (October 2023). This ensures that GPT-40 was not trained on these projects. The selection criteria
for these projects are as follows. First, each project has received more than 50 stars on GitHub and is actively
maintained, ensuring ongoing community interest and updates. Second, the projects span a range of application
domains, including parsers (e.g., XML or YAML), basic software systems, and algorithm libraries. Third, the

ACM Trans. Softw. Eng. Methodol.

14 + Zhangetal

projects feature a number of complex methods with a cyclomatic complexity [20] greater than 10, which suggests
the presence of nested control flows, while also covering intricate C++ language features. The size of the selected
projects varies from 1.9K lines of code (LoC) to 149.4K LoC. Larger projects are excluded to effectively manage
token costs within our limited budget. In total, CITYWALK generates C++ unit test cases for 1288 focal methods
across these ten projects. These selection criteria ensure that our benchmark is both high-quality and reproducible,
while maintaining a balance between diversity and resource constraints.

Table 3. Statistics of the Collected Open-Source C++ Projects

Project Application Type GitHub Stars Size (LoC) # Files # Focal Methods # Complex Methods Trained?
hjson-cpp? User Interface for JSON 73 2911 4 25 9 (36.0%) Y
tinyxml25 XML Parser 5.4K 3606 1 158 5(3.2%) Y
yaml-cpp® YAML Parser and Emitter 5.6K 8800 28 204 31 (15.2%) Y
re2’ Regular Expression Engine 9.4K 20373 10 146 41 (28.1%) Y
ninja® Build System 12.2K 37512 19 238 38 (16.0%) Y
leveldb’ Key-Value Storage Library 38K 149371 17 220 6(2.7%) Y
json.cpp!® JSON Parsing Library 747 62677 1 34 4(11.8%) N
glomap!!’ Map Management Library 1.9K 8477 9 32 4 (12.5%) N
papy'? JSON Data Generator 62 1869 6 25 2 (8.0%) N
mlx!? Array Framework 21.9K 20137 11 206 18 (8.7%) N

3.3 Baselines

This paper focuses on addressing the C++ unit test generation task using LLMs. To this end, we compare
CITYWALK against seven state-of-the-art baselines: First, we select two representative open-source code LLMs:
CodeGeeX4 [56] and DeepSeek-V3 [10], both of which have demonstrated competitive performance on
recent public benchmarks related to coding tasks, such as BigCodeBench [57] and NaturalCodeBench [52]. The
selection of these two models is motivated by their distinct characteristics in terms of parameter size (CodeGeeX4
has 9B parameters, while DeepSeek-V3 comprises 671B parameters) and architecture (CodeGeeX4 utilizes a
Transformer-based architecture, whereas DeepSeek-V3 employs a Mixture of Experts-based architecture). We
exclude CodeLLaMA [28] from our evaluation due to its limited context length. Additionally, we include the closed-
source general-purpose LLMs (i.e., GPT-3.5 [21] and GPT-40 [22]) because of their established effectiveness
across a broad spectrum of tasks. Finally, we compare CITYWALK with three LLM-based unit test generation
approaches for Java and JavaScript: ChatTester [51], HITS [45], and TestPrLoT [33]. Since existing automated
C++ unit test generation tools,; such as Coyote [27] and CITRUS [15], are currently unavailable, we are unable to
reproduce the results reported in their respective papers. Therefore, we do not include them as baselines in this

paper.

“https://github.com/hjson/hjson-cpp
Shttps://github.com/leethomason/tinyxml2
Shttps://github.com/jbeder/yaml-cpp
"https://github.com/google/re2
8https://github.com/ninja-build/ninja
“https://github.com/google/leveldb
Ohttps://github.com/jart/json.cpp
Uhttps://github.com/colmap/glomap
12https://github.com/noahpop77/Papy
Bhttps://github.com/ml-explore/mlx

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 15

3.4 Metrics

As illustrated in Algorithm 1, CITYWALK generates a test file for one focal method at a time. It executes the
generated files individually and utilizes 11vm-cov to compute coverage for each focal method. Specifically, this
paper employs four evaluation metrics commonly used in existing studies [6, 49, 51] to compare the performance
of CITYWALK with the baselines. These metrics collectively provide a comprehensive perspective on the quality,
completeness, and effectiveness of the LLM-generated test cases.

e Compilation Success Rate (CSR): This metric represents the percentage of LLM-generated test cases
that compile successfully relative to the total test case number.

o Execution Pass Rate (EPR): This metric quantifies the percentage of LLM-generated test cases that pass
during execution, reflecting the proportion of tests that yield expected outcomes.

e Line Coverage (Covy): This metric assesses the percentage of source code lines within the focal methods
that are executed by LLM-generated test cases.

e Branch Coverage (Covg): This metric evaluates the percentage of logical conditions in the source code
that are explored by LLM-generated test cases.

3.5 Implementation

We implement the core logic of CITYWALK in Python, invoking GPT-40 via-its API, specifically using the gpt-4o
version from the GPT family of models, which is recognized as the most.advanced model currently available. We
do not truncate input prompts, as the selected LLMs can effectively handle lengthy inputs. We set a maximum
output limit of 4096 tokens. In all experiments, we utilize greedy decoding to generate responses, with CITYWALK
producing the top-1 chat completion choice for each input prompt. To enhance response stability, we set the
sampling temperature to 0. Additionally, we conduct experiments in a zero-shot setting, where no task examples
are provided, thereby demonstrating the superiority of CITYWALK.

4 RESULTS AND ANALYSIS
4.1 Answering RQ1

To answer this question, we conduct a comprehensive comparison of CITYWALK against seven baselines using
the collected benchmark. For each LLM, we utilize its inference API for implementation, employing the same
basic prompt described in Section 1. Specifically, we employ the gpt-3.5-turbo-0125 version of the GPT-3.5
model. For ChatTester [51], HITS [45], and TEsTP1LOT [33], our implementation is based on their open-source
reproduction artifacts from GitHub. Furthermore, we apply the same configuration settings as those used in
CITYWALK for fair comparison'?.

4.1.1 Experimental Metric Evaluation. Table 4, Table 5, Table 6, and Table 7 present the performance of CITYWALK
and selected baselines in C++ unit test generation, evaluated across both correctness metrics (i.e., CSR and EPR)
and coverage metrics (i.e., Covy and Covg). The best result for each metric is highlighted in bold, while the
second-best result is underlined. Our experiments yield the following key findings:

(1) CITYWALK demonstrates superior performance compared to state-of-the-art baselines on the
collected benchmark. When compared to the seven baselines, CITYWALK achieves the best results
across all evaluation metrics. A closer examination of the results reveals that the second-best outcomes
for each metric vary depending on the project under test. Nevertheless, GPT-4o consistently outperforms
other baselines regarding average scores (listed in the Avg. rows) of all the four evaluation metrics.

4Note that the maximum prompt length used in our experiments (14733 tokens) remains within the context window limits of all evaluated

LLMs—GPT-3.5 (16K), CodeGeeX4 (128K), DeepSeek-V3 (128K), and GPT-40 (128K). Therefore, no prompt truncation is necessary during any
of the experiments.

ACM Trans. Softw. Eng. Methodol.

16 « Zhangetal.

Table 4. Comparison of CITYWALK against the Baselines in Terms of Compilation Success Rate (CSR)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg.

CodeGeeX4 0.00% 6.95% 38.98% 0.09% 4.22% 11.75% 10.70% 35.75% 50.00% 51.35% 20.98%
DeepSeek-V3 0.00% 0.00% 17.79% 0.00% 7.35% 13.55% 25.14% 51.93% 18.75% 68.34% 20.29%
GPT-3.5 0.00% 0.00% 19.34% 5.45% 5.00% 9.64% 31.16% 28.57% 52.22% 72.80% 22.42%
GPT-40 16.17% 41.26% 22.01% 0.00% 6.90% 9.74% 51.62% 49.70% 47.90% 73.07% 31.84%
ChatTester 20.00% 18.02% 6.42% 4.68% 11.36% 0.00% 18.75% 8.82% 20.00% 18.01% 12.61%
HITS 1.10% 5.94% 5.65% 0.00% 20.37% 2.66% 0.00% 1.92% 0.00% 0.00% 3.76%
TesTPILOT 26.67% 69.23% 20.47% 0.00% 14.22% 26.18% 70.68% 28.00% 54.17% 2.66% 31.23%
CITYWALK 100.00% 97.25% 80.28% 64.85% 70.09% 47.83% 100.00% 96.70% 84.29% 92.61% 83.39%

Table 5. Comparison of CITYWALK against the Baselines in Terms of Execution Pass Rate (EPR)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg.

CodeGeeX4 0.00% 6.00% 2.76% 0.09% 3.82% 0.36% 8.96% 15.54% 40.54% 41.89% 12.00%
DeepSeek-V3 0.00% 0.00% 13.78% 0.00% 6.69% 12.02% 24.02% 3991% 18.75% 66.29% 18.15%
GPT-3.5 0.00% 0.00% 18.37% 3.41% 4.04% 8.66% 30.82% 10.48% - 38.89% 69.50% 18.42%
GPT-40 14.37% 38.46% 15.75% 0.00% 6.57% 7.61% 49.10% 47.88% 46.22% 69.94% 29.59%
ChatTester 12.00% 13.95% 491% 1.75% 8.77% 0.00% 9.38% 882% 17.14% 13.27% 9.00%
HITS 1.10% 5.45% 4.52% 0.00% 14.90% 1.73% 0.00% 1.92% 0.00% 0.00% 2.96%
TEsTPILOT 6.67% 64.55% 18.14% 0.00% 13.33% 23.98% 70.30% 12.00% 34.72% 2.66% 24.64%
CITYWALK 77.50% 88.24% 67.82% 49.37% 62.12% 41.00% _98.91% 78.02% 81.43% 89.13% 73.35%

Table 6. Comparison of CITYWALK against the Baselines in Terms of Line Coverage (Covy,)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg.

CodeGeeX4 0.00% 15.30% 16.54% 0.00% 8.44% 10.45% 7.14% 21.75% 7.22% 8.11% 9.50%
DeepSeek-V3 0.00% 0.00% 31.50% 0.00% 20.94% 22.23% 37.31% 30.04% 27.78% 16.80% 18.66%
GPT-3.5 0.00% 0.00% 25.59% 0.84% 10.68% 14.73% 12.09% 16.75% 22.10% 17.60% 12.04%
GPT-40 7.73% 43.21% 30.17% 0.00% 10.64% 15.45% 26.50% 22.31% 22.89% 17.85% 19.68%
ChatTester 1.68% 45.00% 0.00% 3.05% 17.52% 0.00% 3.56% 4.47% 9.93% 4.58% 8.98%
HITS 0.00% 35.64% 25.56% 0.00% 19.55% 8.53% 0.00% 4.15% 7.02% 0.00% 9.34%
TesTPILOT 0.00% 70.90% 0.00% 0.00% 0.00% 24.33% 48.17% 0.00% 22.11% 4.55% 17.01%
CITYWALK 27.94% 77.61% 44.46% 42.56% 56.60% 25.25% 50.71% 42.15% 53.11% 24.20% 44.46%

Specifically, CITYWALK surpasses the best baseline, GPT-40, by 51.55% in CSR, 43.76% in ERP, 24.78% in
Covy, and 21.55% in Covg. These improvements underscore the effectiveness of CITYWALK in the C++
unit test generation task.

(2) CITYWALK effectively generates fewer compilation errors than the selected baselines. As observed
from Table 4, it is important to that, in many instances, the selected baselines fail to generate any compilable
unit test cases for the projects under test using the basic prompt. This issue arises because projects (e.g.,
hjson-cpp) do not include the gtest testing framework. Consequently, when the LLMs generate test
code without accounting for these configuration dependencies, they default to using the gtest framework,
resulting in compilation errors for all generated test cases. If configuration-dependent information is
incorporated into other baseline approaches, a portion of their compilation errors could be resolved and

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 17

Table 7. Comparison of CITYWALK against the Baselines in Terms of Branch Coverage (Covg)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg.

CodeGeeX4 0.00% 9.97% 15.73% 0.00% 9.18% 7.88% 10.81% 22.22% 1.35% 2.70% 7.98%
DeepSeek-V3 0.00% 0.00% 24.24% 0.00% 19.03% 23.24% 32.58% 28.89% 15.78% 13.20% 15.70%
GPT-3.5 0.00% 0.00% 21.61% 0.51% 10.22% 12.50% 13.06% 13.33% 8.82% 13.32% 9.34%
GPT-40 8.82% 37.18% 23.54% 0.00% 897% 14.06% 24.84% 17.78% 12.87% 13.40% 16.15%
ChatTester 0.89% 38.45% 0.00% 2.24% 15.46% 0.00% 1.61% 2.48% 4.23% 2.27% 6.76%
HITS 0.00% 26.74% 17.70% 0.00% 16.46% 8.72% 0.00% 3.09% 0.00% 0.00% 7.27%
TesTPILOT 0.00% 57.14% 0.00% 0.00% 0.00% 21.48% 45.48% 0.00% 8.83% 2.27% 13.52%
CITYWALK 24.29% 65.66% 35.56% 35.64% 49.72% 24.64% 46.61% 37.82% 38.97% 18.05% 37.70%

Table 8. Comparison of CITYWALK against the Baselines in Terms of the Number of Generated Test Cases

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Total Failed

CodeGeeX4 175 417 652 1133 1231 1115 402 193 74 439 5831 5456 (93.57%)
DeepSeek-V3 463 1405 1147 1466 2273 1572 533 233 160 482 9734 8664 (89.01%)
GPT-3.5 59 172 827 587 1139 1235 292 105. 90 458 4964 4185 (84.30%)
GPT-40 167 143 750 777 1218 986 277 165 119 479 5081 4124 (81.16%)
ChatTester 25 172 265 171 308 163 32 34 35 211 1416 1306 (92.23%)
HITS 181 404 1239 1190 1389 752 233 156 78 1033 6655 6352 (95.45%)
TesTP1LOT 15 299 215 94 225 955 266 25 72 188 2354 1642 (69.75%)
CITYWALK 40 255 289 140 565 922 183 91 70 230 2785 1021 (36.66%)

their performance could potentially be improved. In contrast, the higher CSR achieved by CITYWALK is
largely due to the inclusion of additional project dependencies. CITYWALK guides the LLMs to generate
syntactically correct test code by directly incorporating relevant configuration dependency information
into the prompt, thereby greatly reducing the occurrence of compilation errors.

The project’s complexity significantly affects the ability of CITYWALK to generate correct test
cases with high coverage. According to the statistical results in the seventh column of Table 3, tinyxml2
exhibits a smaller proportion of complex methods. Consequently, the test cases generated by CITYWALK
for tinyxml2 achieve both high syntactical correctness, with a CSR exceeding 95%, and successful
execution, with an EPR above 85%. This leads to strong coverage metrics, with both Covy, and Covg
exceeding 65%. Conversely, for the more complex project re2, which contains the most complex methods,
the correctness of the generated test code is comparatively low, and the coverage metrics are also less
satisfactory. Additionally, although leveldb has relatively few complex methods, CITYWALK performs
poorly in generating test cases for this project. This underperformance can be attributed to several factors.
We will discuss the intricate cases from leveldb in Section 4.1.2.

CITYWALK achieves high code coverage with fewer test cases than the baselines. Table 8 reports
the number of test cases generated by CITYWALK and the baselines for each project. The Total column
represents the overall number of test cases generated across all projects. The statistical results indicate
that CITYWALK generates fewer test cases compared to the selected baselines (except ChatTester
and TesTPILOT), proving that CITYWALK does not rely on sampling a large number of test cases to
achieve advantages. The reason ChatTester generates the fewest test cases lies in its prompt design, which
explicitly instructs the LLM to “write one test case for each focal method”. This constraint significantly limits
the number of test cases generated by ChatTester, resulting in suboptimal performance of ChatTester

ACM Trans. Softw. Eng. Methodol.

18 « Zhangetal

Table 9. Comparison of CITYWALK against the Baselines in Terms of the Complexity and Mock Frequency of Generated
Test Cases

Approach CodeGeeX4 DeepSeek-V3 GPT-3.5 GPT-40 ChatTester HITS TestPior CITYWALK
Avg. Size 7.7 7.4 6.8 8.0 7.3 5.9 7.1 9.5
Avg. CC 1.3 1.1 1.1 1.2 1.3 1.0 1.4 1.5
Mock Frequency 26.93% 25.38% 5.60% 25.15% 15.23% 21.44% 4.19% 41.73%

CITYWALK-Generated Mock Usage

class : public Node {
public:

MockNode (const std::string& path bool dirty = , bool generated_by_dep_loader =) CITYWALK-Generated Test Case

(path), (dirty), (generated_by_dep_loader) {}

const std::string& () const override { return path_; } (PlanTest, AddSubTarget_NoEdge_Dirty) {

bool () const override { return dirty_; } MockNode (, true);

bool () const override { return generated_by_dep_loader_; } std::string err;

Edge* () const override { return in_edge_; } std::set<Edge*> dyndep_walk;

void (Edge* edge) { in_edge_ = edge; } (plan_->AddSubTarget(&node, nullptr, &err, &dyndep_walk));
private: (err, " ")

std::string path_; }

bool dirty_;

bool generated_by_dep_loader_;
Edge* in_edge_ = nullptr;

Fig. 7. lllustrative Test Case with Compliant Mock Usage.

across many projects. Furthermore, we examine the number of failed test cases generated by CITYWALK
and the baselines, as reported in the Failed column of Table 8. The results show that C'TYWALK produces
significantly fewer failed test cases compared to the baselines, with only 36.66% of its generated test
cases failing to compile or execute. This finding suggests that CITYWALK is more effective in generating
syntactically and semantically correct test cases while maintaining high code coverage.

(5) Comparison of the code complexity and mock usage between CITYWALK and the baselines. As
shown in Table 9, the rows Avg. Size and Avg. CC represent the average number of source code lines
and the average cyclomatic complexity of the generated test cases, respectively. Overall, the test cases
generated by CITYWALK exhibit slightly greater scale and complexity compared to the baselines. This
is expected, as generating correct test assertions necessitates a certain level of complex code logic. In
addition, we examine the frequency of mock usage, defined as the proportion of test files that employ
mock objects. CITYWALK demonstrates a significantly higher mock usage frequency of 41.73%, indicating
its greater capability in producing test cases that involve mocking. This is particularly important for
effectively testing complex methods and achieving comprehensive code coverage. Beyond the quantitative
analysis, we assess the adherence of the generated mocks to established best practices [38]. Figure 7
presents a CITYWALK-generated test case for Plan: :AddSubTarget from the ninja project. In this
example, the core logic of the P1an module is retained, while its dependency nodes and edges are replaced
with mocks to simulate various conditions such as dirty or ready states. This strategy enables precise and
isolated testing without compromising behavioral integrity or introducing excessive mocking.

(6) The correctness and coverage metrics do not necessarily indicate a positive correlation. As
illustrated in Table 4, Table 5, Table 6, and Table 7, high correctness does not always guarantee high code
coverage, and low correctness can sometimes lead to higher coverage. For instance, DeepSeek-V3 on
yaml-cpp demonstrates this phenomenon. Despite achieving lower CSR and EPR compared to other
LLM baselines, DeepSeek-V3 attains the second-highest code coverage scores. According to the fourth
column in Table 8, it is evident that DeepSeek-V3 generates more test cases for yaml-cpp than other

ACM Trans. Softw. Eng. Methodol.

u Test Setup Error

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 19

U Y
’ \
4_—" S
Rt =

= Access Error
Undefine Symbols Error
Syntax Error
Type Error

= Multiple Definition Error

Assertion Error

= Namespace Error
u Linker Error
= Template Error

Compliation Error [Execution Error

Fig. 8. Error Category and Frequency.

LLM baselines. Consequently, the proportion of incorrect test cases is also relatively high; leading to a
scenario characterized by low correctness but high coverage.

The two LLM-based unit test generation approaches for Java (i.e., ChatTester and HITS) achieve
low performance on the collected C++ projects. First, the output of LLMs can vary significantly
depending on the prompt design. If the prompt does not account for the specific characteristics of different
programming languages, the performance of existing Java-specific baselines on C++ unit test generation
may not generalize effectively. Furthermore, to ensure fairness in our experiments, all baselines that use
LLMs for post-processing perform only a single round of iterative fixes, similar to CITYWALK, which
is much fewer than the number of iterations used in their original papers. As a result, the reproduction
performance may be lower than the corresponding results reported. However, this also suggests that
CITYWALK is less dependent on iterative fixes to achieve its performance.

4.1.2 Bad Case Breakdown. We further conduct an in-depth investigation into the common error categories
of the failed test cases generated by CITYWALK. Specifically, we manually analyze the output error messages
associated with these failed test cases and summarize the corresponding error categories. In total, CITYWALK
produces 1567 errors across 1021 failed test cases in all ten projects. Since a single test case can contain multiple
errors, the total error count exceeds the number of failed test cases. Our analysis reveals the following findings
based on the statistical results:

(1)

The two most prevalent categories of errors in the failed test cases are compilation errors and
execution errors. Asillustrated in Figure 8, we subdivide the two high-level categories into distinct
sub-categories. The most common sub-category of compilation errors is Access Error, which occurs
when LLMs frequently generate test code that attempts to invalidly access private variables or methods.
The most common sub-category of execution errors is Test Setup Error, primarily due to LLMs facing
challenges in accurately inferring the mock object configurations, as well as generating valid test data
inputs.

The complexity of C++ language features poses significant challenges for CITYWALK in generat-
ing accurate test cases. In the design of CITYWALK, we integrate language-specific domain knowledge
derived from empirical observations to address common errors, thereby enhancing the performance of
the LLM to some extent. However, since the benchmark is collected from a diverse range of real-world
projects, project-specific issues may still impede the generation of correct and high-coverage test code.
For instance, many functionalities in the large basic software system leveldb rely heavily on external
interactions, such as disk I/O operations and file content checks. This dependence often compels LLMs to
redefine existing methods in dependent classes or to invoke undefined methods when constructing I/0

ACM Trans. Softw. Eng. Methodol.

20 .« Zhangetal.

Table 10. Generalization Results of CITYWALK on Different LLMs in Terms of Compilation Success Rate (CSR)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg. T
CodeGeeX4 0.00% 6.95% 38.98% 0.09% 4.22% 11.75% 10.70% 35.75% 50.00% 51.35% 19.76%
CodeGeeX4 w/ CITYWALK 43.59% 42.11% 54.64% 4.30% 31.45% 29.12% 36.45% 42.44% 61.11% 62.22% R
DeepSeek-V3 0.00% 0.00% 17.79% 0.00% 7.35% 13.55% 25.14% 51.93% 18.75% 68.34% 37.94%
DeepSeek-V3 w/ CITYWALK 74.62% 72.67% 43.45% 47.83% 41.56% 42.53% 53.89% 62.34% 70.11% 73.24% TR
GPT-3.5 0.00% 0.00% 19.34% 5.45% 5.00% 9.64% 31.16% 28.57% 52.22% 72.80% 23.66%
GPT-3.5 w/ CITYWALK 31.78% 72.96% 33.69% 20.05% 27.53% 32.45% 45.23% 37.34% 86.67% 73.07% o

Table 11. Generalization Results of CITYWALK on Different LLMs in Terms of Execution Pass Rate (EPR)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx . Avg. T
CodeGeeX4 0.00% 6.00% 2.76% 0.09% 3.82% 0.36% 8.96% 15.54% 40.54% 41.89% 21.36%
CodeGeeX4 w/ CITYWALK 30.77% 37.92% 42.92% 2.15% 26.78% 25.56% 21.78% 32.34% 55.56% 57.78% o
DeepSeek-V3 0.00% 0.00% 13.78% 0.00% 6.69% 12.02% 24.02% -« 39.91% 18.75% 66.29% 33.43%
DeepSeek-V3 w/ CITYWALK 67.69% 64.92% 31.82% 42.61% 36.78% 37.63% 47.12% 51.56% 65.52% 70.12% R
GPT-3.5 0.00% 0.00% 18.73% 3.41% 4.04% 8.66% 30.82% 10.48% 38.89% 69.50% 23.71%
GPT-3.5 w/ CITYWALK 31.78% 70.24% 28.75% 12.98% 32.89% 28.72% 38.47% 27.45% 80.00% 69.94% e

Table 12. Generalization Results of CITYWALK on Different LLMs in Terms of Line Coverage (Covy)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg. T
CodeGeeX4 0.00% 15.30% 16.54% 0.00% 8.44% 10.45% 7.14% 21.75% 7.22% 8.11% 14.42%
CodeGeeX4 w/ CITYWALK 15.78% 46.15% 35.28% - 28.04% 19.12% 12.45% 26.89% 37.89% 8.11% 9.44% en
DeepSeek-V3 0.00% 0.00% 31.50% 0.00% 20.94% 22.23% 37.31% 30.04% 27.78% 16.80% 21.79%
DeepSeek-V3 w/ CITYWALK 22.44% 78.17% 42.80% 39.71% 52.23% 26.63% 48.35% 43.45% 32.87% 17.85% o
GPT-3.5 0.00% 0.00% 25.59% 0.84% 10.68% 14.73% 12.09% 16.75% 22.10% 17.60% 21.67%
GPT-3.5 w/ CITYWALK 10.01% 74.87% 42.59% 30.62% 32.45% 20.12% 23.56% 32.56% 52.43% 17.85% o

streams, leading to errors such as Multiple Definition Error and Undefined Symbol Error, which
result in low evaluation metrics. Additionally, leveldb involves advanced features like synchronization
locks, which significantly increase the complexity and challenge the test generation process. Moreover, the
absence of an automated and strict exception handling mechanism, akin to that in Java, complicates the
LLM'’s ability to generate correct test code with exception handling logic. The most frequently occurring
assertion errors can be traced back to the lack of supplementary post-processing techniques (e.g., post-hoc
fix), which could help prompt LLMs to rectify incorrect assertions in the generated test cases. We are
concerned that providing LLMs with error messages that include expected outputs may encourage them to
replicate those outputs directly, thus manipulating the compiler into successful execution of the generated
test cases. We will discuss these false positive cases in detail in Section 5.4.

4.1.3 Generalizability Evaluation. We further employ CITYWALK to three LLMs, including CodeGeeX4, DeepSeek-
V3, and GPT-3.5. Specifically, we conduct ablation experiments on each LLM individually to investigate the
impact of querying the corresponding LLM using the prompting strategy and additional contextual guidance
designed by CITYWALK. Table 10, Table 11, Table 12, and Table 13 present the comparison results using the
correctness and coverage metrics, respectively. Each LLM’s results are displayed in two lines: the first line shows
the results when the LLM directly utilizes the basic prompt to generate unit test cases for the given focal methods,

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 21

Table 13. Generalization Results of CITYWALK on Different LLMs in Terms of Branch Coverage (Covg)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg. T
CodeGeeX4 0.00% 9.97% 15.73% 0.00% 9.18% 7.88% 10.81% 22.22% 1.35% 2.70% 10.93%
CodeGeeX4 w/ CITYWALK 5.18% 33.07% 31.23% 21.09% 21.45% 10.72% 21.53% 32.98% 5.25% 6.67% oo
DeepSeek-V3 0.00% 0.00% 24.24% 0.00% 19.03% 23.24% 32.58% 28.89% 15.78% 13.20% 19.30%
DeepSeek-V3 w/ CITYWALK 23.65% 65.98% 35.06% 31.94% 51.89% 25.15% 45.41% 38.12% 18.88% 13.87% o
GPT-3.5 0.00% 0.00% 21.61% 0.51% 10.22% 12.50% 13.06% 13.33% 8.82% 13.32% 16.86%
GPT-3.5 w/ CITYWALK 12.70% 61.39% 34.99% 24.66% 27.12% 17.33% 19.84% 27.46% 23.09% 13.40% o

and the second line presents the results when integrated with CITYWALK. We derive two key insights from the
statistical results: @ Integrating CITYWALK as a complementary plug-in enhances the performance of
C++ unit test generation. As observed, the three evaluated LLMs demonstrate consistent improvements in
all four metrics across the ten projects. @ Performance gains scale markedly with parameter count. For
example, the average performance gain of each metric (listed in the Avg. T column) with DeepSeek-V3-671B is
substantially greater than that of CodeGeeX4-9B.

Answer to RQ1: In conclusion, CITYWALK exhibits a marked superiority over the LLM-based baselines
across all evaluation metrics, highlighting its effectiveness in C++ unit test generation. Furthermore, CITY-
WALK effectively harnesses the latent intelligence of the LLMs,demonstrating the potential for seamless
integration with additional LLMs in a plug-and-play manner.

4.2 Answering RQ2

To answer this question, we conduct a series of ablation experiments to assess the impact of different designed
components within CITYWALK. To ensure the fairness of comparisons, the parameter configurations align with
those described in Section 3.5.

4.2.1 Ablation Study. The components within the CITYWALK design include configuration dependencies Dep,
cross-file data dependencies Depg, intention contexts Contextiytent, guidelines of language-specific domain
knowledge Guidelinep, step-by-step instructions PROMPTstep, and post-processing techniques FiXruie+prompt-
Specifically, we perform ablation experiments by removing one component at a time and analyze the performance
contribution of each component regarding the coverage metrics Covy, and Covg. Table 14 and Table 15 show the
performance contribution results (denoted as the performance degradation values). The greater the coverage
scores decline, the larger the contribution of that component. The Avg,. | columns present the average results
across all projects. When compared to CITYWALK, each ablation model exhibits varying degrees of decline in
terms of Covy, and Covp, indicating that each designed component contributes to the overall enhancement in
generating high-quality unit test cases. According to the statistical results presented in Table 14 and Table 15, the
top three components that contribute the most to CITYWALK are Depc, Depg, and Contextintent.

As discussed in Section 4.1.1, Dep, plays a crucial role in guiding LLMs to generate syntactically correct test
code by directly incorporating configuration dependencies. Thus, projects not utilizing gtest (e.g., tinyxml2
and papy) would benefit from Dep. as it helps LLMs recognize the absence of this testing framework, thereby
preventing hallucinate invocations of frameworks or libraries absent from the project’s dependencies. It is worth
noting that post-processing techniques (e.g., Pynguin’s method injection [18]) could also address certain types of
compilation errors. In the design of CITYWALK, we integrate both proactive prevention strategies (e.g., explicitly
incorporating Dep.) and reactive post-hoc fixes (i.e., FiXyyietprompt). Our ablation study reveals that using only
post-processing (w/o Dep.) leads to a 29.49% drop in average Covy, and a 24.58% drop in average Covp. In contrast,

ACM Trans. Softw. Eng. Methodol.

22 .« Zhangetal.

Table 14. Performance Contribution of Each Component in Terms of Line Coverage (Covy)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg. |
CITYWALK 27.94% 77.61% 44.46% 42.56% 56.60% 25.25% 50.71% 42.15% 53.11% 24.20%
w/o Dep. -27.94% -77.31% -12.08% -42.56% -3.82% -136% -50.71% -1.81% -53.11% -24.20% -29.49%
w/o Depg -0.82% -32.42% -14.50% -7.07% -15.26% -8.69% -19.04% -13.03% -15.51% -3.48% -12.98%
w/o0 Contextintent -12.36% -29.84% -8.72% -8.21% -11.21% -5.11% -6.59% -9.70% -11.38% -0.90% -10.40%
w/o PROMPTstep -5.46% -12.97% -12.33% -9.86% -8.42% -891% -12.48% -7.59% -16.34% -7.50% -10.19%
w/o Guidelinepg -16.74% -7.40% -11.48% -7.87% -7.04% -2.69% -3.59% -5.59% -24.61% -6.29% -9.33%
Ww/0 FiXpyletpronpt -5.24% -1251% -14.95% -8.48% -10.76% -151% -127% -4.26% -7.42% -3.94% -7.03%

Table 15. Performance Contribution of Each Component in Terms of Branch Coverage (Covg)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap _papy mlx Avg. |
CITYWALK 24.29% 65.66% 35.56% 35.64% 49.72% 24.64% 46.61% 37.82% 38.97% 18.05%
w/o Dep. -24.29% -65.66% -10.04% -35.64% -3.38% -1.50% -46.61% . -1.70% -38.97% -18.05% -24.58%
w/o Depg -1.99% -30.69% -11.48% -7.94% -14.60% -8.75% -19.33% < -13.93% -18.61% -4.92% -13.22%
w/o Contextintent -14.56% -28.48% -7.00% -9.87% -9.60% -5.17% -6.83% -9.59% -14.14% -2.93% -10.82%
w/0 PROMPTg¢ep -5.97% -13.60% -10.19% -9.90% -6.16% -8.97% -12.49% -7.59% -19.04% -9.25% -10.32%
w/o Guidelinepg -15.51% -8.07% -8.70% -9.02% -5.83% -2.75% -3.72% -5.70% -28.97% -4.65% -9.29%
W/0 FiXpyletpronpt -6.12% -9.68% -8.52% -9.60% -30.33% -3.11% -0.64% . -3.26% -8.92% -5.83% -8.60%

using only proactive prevention (W/0 FiXrulesprompt) results in a smaller decrease: 7.03% in average Covy, and
8.60% in average Covg. These results indicate that relying solely on post-hoc fixes is less effective than employing
proactive prevention alone.

Figure 9 illustrates how extracted cross-file data dependencies are used as guidance for LLMs to generate correct
test cases. By providing the key Depgq (i.e.; the initialization constructor of Json) from the json.h file, LLMs can
prevent compilation errors that would otherwise arise due to invoking the non-existent function setNumber.
Figure 10 illustrates how Contextintent can guide LLMs in generating correct test cases for the Failed Test
Case @ within Figure 1. Specifically, the retrieved ParseTag method within the singledocparser class provides
an invocation example of the focal method, while the retrieved _Tag method within the emittermanip header
file offers an initialization example of the focal method. These examples significantly aid LLMs in understanding
the usage patterns of the focal method, contributing to the generation of functionally correct assertions and
enhancing code coverage.

4.2.2 The Impact of Different Error-Fixing Phases within CITYWALK. We further investigate the influence of
individual error-fixing phases within our three-phase post-processing techniques on test case quality enhancement.
As described in Section 2.6.2, Phase @ and Phase @ focus on resolving syntactic and compilation errors via
predefined rules, while Phase © leverages the LLM to address compilation errors. Through ablation experiments
that incrementally incorporate each phase, we quantify their respective contributions using the correctness
metrics CSR and EPR. Table 16 and Table 17 present phase-by-phase performance improvements, where higher
correctness score increments reflect greater phase contributions. The Avg. T columns aggregate cross-project
average results. Specifically, the integration of Phase @ yields improvements of 3.10% in CSR and 3.19% in EPR.
Subsequent incorporation of Phase @ delivers substantial enhancements, achieving additional gains of 29.80%
in CSR and 25.98% in EPR. Including Phase © sustains quality improvements with further increases of 8.65%
and 6.75% in CSR and EPR, respectively. The varying contributions across phases originate from differences in
the types of errors resolved. Phase @ focuses on correcting basic syntactic errors. However, since CITYWALK

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 23
Structured Focal Context

)) Failed Test Case
json.cppl/json.cpp

void
#include

®
= jt::Json json;
\\ json. () Error Message
void () N = i json:se 0: . - —> [error: no member named
{ \ (json. () == jt::Jsonz:Null); ‘setNumber' in ‘jt::Json']
O ! std::cout << << std::endl;
type_ = Null; ! GPT-40 with } Compiler
} B Basic Prompt
i
'

json.cppljson.h <~ ’

01 @)
n‘amespace son json(””); “iﬂ
cass Json..=TLT);

h i (json. 0)
/=01 (int value)}: type_(Long), long_value(value) {} std::cout << /& rosend << stdzendl;
¥ GPT-40 guided by Cross-File }

Data Dependencies
Extracted Cross-File Data Dependencies

Passed Test Case with Correct Function Invocation

Fig. 9. Illustration Example of How Cross-File Data Dependencies Guide LLMs Generate Correct Test Cases.

Structured Focal Context

yaml-cpp/srci/tag.cpp

Failed Test Case @
#include (TagTranslateTest, PrimaryHandleTag) { ®
YAML::Mark mark;
const std::string! :knrmst Directivesa& directives) { YAML::Token token(YAML::Token::TAG, mark); Error Message
switch (type) { T ; token.data = YAML::PRIMARY_HANDLE;
' v — token.value = H — > —— [Failure. Expected equality of these
case PRIMARY_HANDLE: YAML::Tag tag(token); values: tag.Translate(directives),
return directives. 2 (") + value; TestDirectives directives; which is "str", "tag:yaml.org,2002:str"]
Y \ GPT-40 with (tag. " ans - -(directives),) Compiler
\ AN Basic Prompt }
8 N
throw s(d::runtime_grror(\\)
} AN N

yaml-cpplsrc/singledocparser.cpp

(TagTranslateTest, PrimaryHandleTag) { @ ;:
) YAML::Mark mark; =~
struct { \ void \\ (std::string& tag) { YAML::Token token(YAML::Token::TAG, mark);
2 Token& toker = m_scanner. - (); token.value =
explicit (const std::string& prefix_, const std::string& if (tag. O,
content_, Type::value type_)

[YAML::iTag tag = YAML::LocalTag(token.value);l
throw ParserException(token.mark, | TestDirectives directivegt
ErrorMsg::MULTIPL\EATAGS); X nt,)
b Tag o
inline _Tag (cons! std:string& content)| tag = taglnfo.
return _ content, _ B

“(m_directives);
}

m_scanner. F

GPT-40 guided by
Intention Contexts

}

3)
(tag.content,)
Retrieved Intention Contexts

Passed Test Case with Correct Assertions

Fig. 10. lllustration Example of How Intention Contexts Guide LLMs Generate Correct Test Cases.

already incorporates prompt optimization techniques that significantly reduce such errors, this phase yields
only marginal improvements. In contrast, Phase @ utilizes compiler feedback to resolve a broader range of
rule-based and compiler-diagnosable errors, resulting in more substantial gains. Finally, Phase @ targets complex
compilation errors that require deeper semantic reasoning about the root causes, thereby further enhancing test

case quality. Statistical analysis demonstrates that all three phases exhibit non-negative performance impacts,
collectively enhancing test case quality across both metrics.

Answer to RQ2: To sum up, all components of CITYWALK significantly improve the performance of C++
unit test generation in terms of the coverage metrics.

ACM Trans. Softw. Eng. Methodol.

24 .« Zhangetal.

Table 16. Performance Contribution of Each Error-Fixing Phase in Terms of Compilation Success Rate (CSR)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg. T
No Error-Fixing Phase 77.08% 67.96% 27.59% 34.76% 22.15% 28.78% 74.56% 36.91% 54.37% 22.97%
w/ Phase @ +0.00% +5.97% +0.00% +1.72% +1.60% +4.97% +0.00% +16.78% +0.00% +0.00% +3.10%
w/ Phase @ + @ +22.92% +27.97% +37.32% +56.04% +44.52% +11.39% +16.58% +58.33% +0.00% +53.90% +32.90%

w/ Phase @+ + © +22.92% +29.29% +52.69% +58.81% +47.94% +19.05% +25.44% +59.79% +29.92% +69.64% +41.55%

Table 17. Performance Contribution of Each Error-Fixing Phase in Terms of Execution Pass Rate (EPR)

Project hjson-cpp tinyxml2 yaml-cpp re2 ninja leveldb json.cpp glomap papy mlx Avg. T
No Error-Fixing Phase 54.17% 61.27% 23.24% 31.33% 19.85% 27.12% 71.93% 27.52% 45.69% 21.70%
w/ Phase @ +4.16% +7.66% +0.00% +1.58% +0.30% +3.42% +0.00% +14.76% +0.00% +0.00% = +3.19%
w/ Phase @ + @ +21.51% +25.61% +32.46% +51.43% +37.27% +9.44% +15.05% +47.48% +0.00% +51.43% +29.17%

w/Phase @ + ® + © +23.33% +26.97% +44.58% +55.81% +42.27% +13.88% +26.98% +50.50% +7.42% +67.43% +35.92%

5 DISCUSSION
5.1 Effectiveness of CITYWALK in Bug Detection

Detecting real software bugs is a critical criterion for evaluating the effectiveness of automated unit test generation
approaches. To complement our assessment based on correctness and coverage metrics, we employ mutation
testing to measure the bug-detection capability of CITYWALK-generated test cases. Prior studies [12, 16] have
validated the utility of mutation testing for both evaluating test quality and guiding the generation of more robust
test cases. Mutation testing works by introducing small artificial bugs (i.e., mutants) into the program under
test. A test suite is considered effective if it can distinguish the mutated version from the original, i.e., “kill” the
mutant by triggering observable failures. In this study, we adopt the updated open-source tool universalmutator
[9], which supports a broad range of mutation operations; as outlined below:

o Arithmetic operator mutations: e.g., + & —, * & /

Comparison operator mutations: e.g., < & >, ==« | =

Logical operator mutations: e.g., && < ||

Control structure mutations: e.g., removing else, break < continue

e Structural mutations: e.g., deleting or commenting out code blocks

e Literal and constant mutations: e.g., true < false, @ & 1, string substitutions

To facilitate analysis, we select two single-file projects, tinyxml2 and json.cpp, as evaluation subjects. We
first perform mutation testing on the test cases generated by CITYWALK, and then calculate the mutation score,
which isdefined as the ratio of killed mutants to total valid mutants. A higher mutation score indicates stronger
bug detection capabilities and higher oracle quality [47]. We yield the following key observations according to
the evaluation results presented in Table 18:

(1) CITYWALK-generated test cases respective achieve a mutation score of 89.34% for json.cpp and 81.12%
for tinyxml2. These results indicate that CITYWALK is highly effective in generating test cases that
detect a substantial proportion of artificial bugs introduced into the code, validating its capability to
uncover potential bugs.

(2) The mutation score for json.cpp (created after the GPT-40 knowledge cutoff) outperforms tinyxml2
(which has a risk of potential data leakage) by 8.22%. This provides additional evidence that CITYWALK’s
ability to generate high-quality test cases is primarily driven by the designed components as guidance,
rather than relying on GPT-40’s memorization of training data.

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 25

Table 18. Mutation Testing for CITYWALK-Generated Test Cases on tinyxml2 and json.cpp

Project # Total Valid Mutants # Killed Mutants Mutation Score

tinyxml2 6272 5088 81.12%
json.cpp 844 754 89.34%

(3) According to the results from the SBST 2022 tool competition [34], EvoSuite achieved a mutation score
of 34.1% on the competition benchmark. Additionally, the open-source tool universalmutator achieved
an average mutation score of 35% on the evaluated C++ projects in the corresponding paper [9]. In
comparison, the mutation scores achieved by CITYWALK are notably higher, further emphasizing the
effectiveness of CITYWALK-generated test cases.

Furthermore, we conduct a case-by-case analysis to assess the usefulness of CITYWALK in discovering real-
world bugs. We manually inspect two bugs from tinyxml2 that were identified by CITYWALK-generated test
cases. These are real-world issues that have been reported by human developers. As illustrated in Figure 11(a),
the CITYWALK-generated test case first creates an XMLDocument object, doc, which then invokes the Value
function. This function, in turn, calls XMLNode: : Value (). Since the variable _value within XMLNode: : Value()
may not have been initialized, it triggers an assertion error in the GetStr function. This bug corresponds to Issue
#3235 in tinyxml2, where a human developer also commits an assertion failure when calling Value. Figure 11(b)
shows another bug triggered by CITYWALK, where invalid hexadecimal format string arguments are passed to
ToInt64. This bug is associated with Issue #8251 in tinyxml2;, where a human developer also identifies a similar
issue when calling the static member function ToInt64. In summary, the test cases generated by CITYWALK
demonstrate the potential to detect real bugs in open-source projects.

5.2 Efficiency of CITYWALK

To evaluate the efficiency and practical feasibility of CITYWALK in the context of C++ unit test generation,
Table 19 presents the average execution time per focal method and the corresponding token usage for CITYWALK
and each baseline approach. The following insights can be drawn from the statistical results:

(1) Despite not being the fastest or most cost-efficient approach, CITYWALK maintains acceptable computa-
tional overhead. The average execution time per focal method is 34.59 seconds, significantly lower than the
slowest baseline (HITS at 184.39 seconds). Since writing unit tests is time-consuming [13], CITYWALK
remains a viable option for developers to enhance testing accuracy while ensuring prompt response times.
Moreover, although CITYWALK incurs a higher average token usage (5726 tokens per method) compared
to most baselines, the incremental cost per method is approximately $0.03 higher than the best baseline
TesTP1iLOT, which may be justifiable given CITYWALK’s improved correctness and coverage—especially
in scenarios where test reliability is prioritized (e.g., safety-critical systems).

(2) Although CITYWALK does not achieve the lowest values in terms of efficiency metrics, it consistently
delivers superior test quality, stemming from the designed contextual guidance and post-processing
mechanisms. This indicates that CITYWALK strategically trades a moderate increase in computational
and monetary cost for substantial gains in test effectiveness, a trade-off often justified in practical software
development scenarios.

Shttps://github.com/leethomason/tinyxml2/issues/323
18https://github.com/leethomason/tinyxml2/issues/825

ACM Trans. Softw. Eng. Methodol.

26 + Zhangetal.

tinyxml2 Issue #825 : Wrong Scanf arguments Error Message

<« [warning: integer literal is too large to

warning: format ‘%lIx’ expects argument of type ‘long long unsigned int*, but argument 3 has type ‘long long int*’ [-Wformat=] be represemed in a signed integer
type, interpreting as unsigned]

\
i Focal Method Bug-Finding Test Case i
I
' I
i i void 04 :
! tinyxml2/tinyxml2.cpp input generate tinyxml2::XMLDocument doc; H
! const char* () const { —_— E— const char* value = doc. 0 !
1 return _value. 0 (value ==): |
i } ‘ - std::cout << << std::endl; \
! CITYWALK '
' '
' i I
i Associated Compiler |
; Bug i
I
| tinyxml2 Issue #323 : Assert fires when calling XMLDocument::Value() Error Message | !
: €————— [Assertion failed: _start,]
H No matter - before or after successfully parsing a text - calling XMLDocument::Value() causes an assert in debug. tinyxml2.cpp, line 302] i
' I
' '
i (a) Real-World Issue @ Caused by Assertion Failure i
T T T T T e _- - -_ --------------------------- 1
! Focal Method Bug-Finding Test Case '
' '
' '
i : . void 04 |
! tinyxml2/tinyxml2.cpp input generate value; !
' bool (const char* str, *value) { —_ - bool result = XMLUtil::ToInt64(, &value); 1
' long long v = 0; (result == b '
1 if((str, (st ? : L8v) == 1){ (value == % 1
' *value = static_cast< >(v); CITYWALK } |
B return B !
! I '
I
: return i :
o Compiler |
I
' '
H Associated ! |
'
! Bug |
1 i
' 1
' I
' I
' '
' I
' '
' '
' '
' 1
' |

(b) Real-World Issue @ Caused by Wrong Scanf Arguments

Fig. 11. llustration of Two Real-World Issues from tinyxml2 Found by CITYWALK.

Table 19. Efficiency Comparison of CITYWALK against the Baselines

Approach CodeGeeX4 DeepSeek-V3 GPT-3.5 GPT-40 ChatTester HITS TestPiror CITYWALK
Avg. Execution Time (s) 15.93 57.02 10.26 18.62 70.30 184.39 24.45 34.59
Avg. Token Usage 2533 3553 1849 2583 2222 11736 1436 5726

5.3 Readability and Usability of Test Cases Generated by CITYWALK

The ultimate goal of automated unit test generation is to assist developers in writing test cases. To compare the
readability and usability of the test cases generated by CITYWALK with those produced by four LLM-based
baselines (i.e., CodeGeeX4, DeepSeek-V3, GPT-3.5, and GPT-40), we conduct a human evaluation to determine
developer preference. We invite five participants, each with over three years of C++ development experience,
to perform the assessment. We focus on focal methods for which both CITYWALK and the LLMs generated
correct test cases, as recommending test cases that fail to compile or execute is impractical. We further limit our
analysis to methods with existing human-written test cases in the original project repositories. Consequently,
we randomly select 25 focal methods across five projects from our benchmark. Each participant is required to
evaluate 150 test cases, comprising one CITYWALK-generated, four LLM-generated, and one human-written
test case for each focal method. Each test case is independently scored across the following four aspects. Scores
of each aspect range from 1 (lowest quality) to 3 (highest quality). To avoid bias, participants are not informed
about the source of each test case (i.e., whether it is LLM-generated or human-written).

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 27

Naming Intuitiveness. Clarity and descriptiveness of variable and test method names.
Code Layout. Structure, logic, and formatting of the test code.

Assertion Quality. Effectiveness and relevance of assertions for validating the focal method.
Adoption Efforts. Ease of integrating the test case into real-world usage.

Table 20 summarizes the average scores across all participants. The results show that CITYWALK outperforms
all LLM baselines in each of the four aspects. Specifically, CITYWALK surpasses the best baseline by 1.41% in
Naming Intuitiveness (compared to DeepSeek-V3), 10.66% in Code Layout (compared to GPT-40), 18.27% in
Assertion Quality (compared to DeepSeek-V3), and 7.14% in Adoption Efforts (compared to DeepSeek-V3
and GPT-40). Compared with human-written test cases, participants consider CITYWALK-generated test cases
with more intuitive naming and more structured code. However, in terms of usability, CITYWALK-generated test
cases demonstrate slightly lower assertion quality and comparable adoption effort. This is expected, as generating
high-quality assertions remains an open challenge in LLM-based unit test generation. Overall, the findings
highlight the superior readability and practical usability of CITYWALK-generated test cases, underscoring its
value as a developer-assistive tool.

Table 20. Comparison of CITYWALK against the LLM Baselines in Terms of the Readability and Usability of Generated Test
Cases

Readability Usability
Approach
Naming Intuitiveness Code Layout / Assertion Quality Adoption Efforts

CodeGeeX4 2.70 2.32 1.46 2.47
DeepSeek-V3 2.83 2.39 2.08 2.52
GPT-3.5 2.55 2.26 1.75 2.38
GPT-40 2.70 2.44 2.06 2.52
CITYWALK 2.87 (1.41% 1) 270 (1066% 1) 2.46 (18.27% 1) 2.70 (7.14% 1)
Human-Written 2.64 2.63 2.87 2.75

5.4 False-Positive Executable Test Cases

Existing LLM-based unit test generation approaches [45, 51] primarily rely on compiler error messages to
iteratively guide LLMs in fixing test cases that fail during execution. However, this strategy can lead LLMs to
align expected values with observed outputs, resulting in test cases that pass without necessarily validating the
intended functionality. As illustrated in Figure 12, when provided with the error message, GPT-40 directly uses
the expected value * “str'' as the input for assertions, resulting in a passing test case that is, in reality, a false
positive. While such behavior resembles regression testing, a common practice in automated unit test generation,
it risks reinforcing incorrect behavior when the underlying implementation contains faults.

Our goal is to highlight this specific risk introduced by compiler message—driven error-fixing strategies in
LLM-based frameworks. When LLMs are exposed to runtime or compiler messages that reveal actual outputs,
they may inadvertently “learn” to generate assertions that merely reproduce observed behavior rather than
verify correctness. Thus, CITYWALK is intentionally designed to avoid relying on compiler feedback for fixing
execution failures. Effectively detecting and addressing such false positives remains as our future work.

5.5 Threats to Validity
In this subsection, we discuss the primary threats to the validity of CITYWALK, as outlined below:

ACM Trans. Softw. Eng. Methodol.

28 « Zhangetal.

Structured Focal Context Failed Test Case @
GPT-40 with 3 v
yaml-cpp/srci/tag.cpp N (TagTranslateTest, PrimaryHandleTag) {
— Basic Prompt YAML::Mark mark; @
;\.mc\ude YAML::Token token(YAML::Token::TAG, mark);
e e token.data = YAML::PRIMARY_HANDLE;
#mg‘“d(z token.value = 5
Albelz YAML::Tag tag(token);
const std::string (const Directives& directives) { TestDlrectlves(lglrectlves; (directives), Y
switch (type) { } 9- 2 D “
case VERBATIM: !
return value; v
case PRIMARY_HANDLE: Passed Test Case of False Positive Error Message Output by Compiler
return directives. (1) + value; . [Failure. Expected equality of these
. (Ta_gTransIateTest, PrimaryHandleTag) { values: tag.Translate(directives),
default: YAML:Mark mark; which is "str", "tag:yaml.org,2002:str"]
() YAML::Token token(YAML::Token:: TAG, mark);
throw std::runtime_error(); EXPECT EQ(tag.Translate(directives), "str")] GPT-40 guided by Error Message

} }

Fig. 12. False Positive Example for the Failed Test Case @ within Figure 1 using Iterative LLM-Based Fixing.

e External Threat. The primary threats to external validity lie in the diversity of the projects used for
evaluation and its generalization to other LLMs. In this paper, we collect 1288 focal methods across ten
real-world open-source C++ projects crawled from GitHub, ensuring a degree of diversity and quality in
our evaluation. For comparison, we select two open-source code LLMs (CodeGeeX4 and DeepSeek-V3)
and two closed-source commercial LLMs (GPT-3.5 and GPT-40), considering their varied model sizes,
architectures, and effectiveness on coding tasks. Future work will involve expanding the benchmark and
integrating additional LLMs to better assess the generalizability of CITYWALK.

o Internal Threat. LLMs exhibit sensitivity to prompt configuration and hyper-parameter settings, par-
ticularly the number of task examples and the phrasing of natural language instructions, which can
substantially influence performance. To ensure a fair comparison, we use consistent prompts and hyper-
parameters across both CITYWALK and all baseline approaches. Additionally, we adopt empirically
motivated default configurations rather than fine-tuning prompts or parameters through trial-and-error.
We acknowledge that further improvements may be achievable through additional prompt and hyper-
parameter tuning. Another potential threat to validity relates to data leakage issue. As GPT-4o is a
closed-source model, the exact composition of its training data are not publicly disclosed. Despite this
limitation, CITYWALK exhibits a significant improvement in generating high-quality test cases compared
to GPT-40, which utilizes the same underlying architecture. These enhancements suggest that the per-
formance gains achieved by CITYWALK are not merely attributable to the model’s memorization of its
training data:

6 RELATED WORK

To mitigate the manual effort associated with writing unit tests for developers in practice, researchers have
proposed various automation techniques aimed at enhancing testing efficiency. Existing approaches can be
broadly categorized into the following three technical avenues.

6.1 Program Analysis-Based Automated Unit Testing Tools

EvoSuite [12] is an automated test case generation tool tailored for Java. It utilizes mutation testing and constraint-
solving techniques to generate appropriate assertions, which effectively summarize the behavior of the program
while maximizing the number of killed mutants. In contrast, Randoop [24, 25] is an automated tool that adopts
feedback-driven random testing techniques to generate assertions. Randoop leverages the outcomes of test
executions to generate assertions that accurately capture the program’s behavior. Pynguin [18], an extendable

ACM Trans. Softw. Eng. Methodol.

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 29

test generation framework for Python to produce regression tests via search-based techniques. Coyote C++ [27]
employs a sophisticated concolic execution-based method to facilitate fully automated unit testing for C and C++.
Despite demonstrating commendable performance in achieving high code coverage, the aforementioned tools
exhibit certain limitations: (1) The test code generated by existing tools often suffers from poor readability [7];
(2) The assertions produced by these tools are frequently insufficient in effectively detecting real-world faults
[35, 36]; (3) Search-based techniques may encounter path explosion issues due to excessively large search spaces
[41].

6.2 Pre-Trained Language Model-Based Automated Unit Test Generation

Tufano et al. [43] pre-trained a language model on large-scale unsupervised Java corpora, subsequently fine-
tuning the model for unit test generation, thereby enabling the efficient generation of test cases. Zhang et al. [54]
adopted the summarization of focal methods as complementary information to capture the developers’ intent,
which aids in generating meaningful test assertions for helping developers in writing accurate unit test cases.
Similarly, Alagarsamy et al. [1] utilized both focal methods and assertion declarations during model pre-training,
aiming to establish connections between focal methods and corresponding test cases. Shin et al. [37] developed
project-specific datasets for domain adaptation by leveraging existing developer-written test cases within each
project, promoting the generation of more human-like unit tests. Steenhoek et al. [40] employed reinforcement
learning for model optimization, designing reward functions based on the static quality metrics of the generated
unit test cases. Nonetheless, unit test cases generated through the paradigm of pre-training and fine-tuning
frequently encounter compilation or execution failures [50].

6.3 LLM-based Automated Unit Test Generation

With the emergence of generative artificial intelligence, researchers have increasingly investigated LLM-driven
approaches for automatically generating unit test cases [17, 44]. ChatUniTest [6] adaptively constructs dependency
contexts for the focal method, and employs a generate-validate-fix mechanism to address errors in the generated
test cases. Similarly, ChatTester [51] enhances the quality of generated test cases via intent comprehension
and iterative correction. In contrast to prompt engineering-based approaches that merely append file-level
dependencies as additional contextual information, CITYWALK conducts a comprehensive analysis of the
project under test to extract project-level dependencies that impact test case generation, such as environment
requirements. Moreover, CITYWALK employs RAG techniques to integrate language-specific knowledge from
project documentation and source code, thereby enhancing performance. On the other hand, SymPrompt [30]
guides LLMs to generate high-coverage test code by incorporating symbolic execution-based path information
into the prompts. However, SymPrompt does not address the issue of path reachability, which can result in the
inclusion of unreachable path information in the prompts, ultimately leading to inaccurate model reasoning.
HITS [45] simplifies the analysis of complex focal methods through program decomposition and achieves high
coverage scores by prompting LLMs to generate test cases for sliced code segments. Unlike previous approaches
that primarily target interpreted languages such as Java and Python, CITYWALK is specifically designed to
address C++-specific challenges. In this work, CITYWALK conducts an empirical analysis to identify common
error patterns in LLM-generated C++ unit tests, It then documents these C++-specific failure patterns as insights
to guide the post-processing of generated test cases, ensuring their accuracy and reliability.

7 CONCLUSION AND FUTURE WORK

This paper presents a novel framework CITYWALK designed to enhance the capabilities of LLMs in generating
high-quality C++ unit test cases. We explore the potential of GPT-40 by integrating program analysis techniques
with retrieval-augmented strategies, providing guidance through three key aspects: project dependencies,

ACM Trans. Softw. Eng. Methodol.

30 « Zhangetal.

intention contexts, and language-specific knowledge. Additionally, we decompose the unit test generation
task into three distinct stages, utilizing step-by-step instructions to streamline the generation of C++ test cases,
complemented by effective post-processing techniques. Extensive experiments demonstrate the superiority
of CITYWALK, and further ablation studies validate the contributions of each designed component within
CITYWALK.

Future work will focus on improving LLM-generated unit test quality through two key advancements: (1)
developing robust assertion verification techniques to validate functional correctness beyond coverage metrics,
ensuring precise alignment with program specifications, and (2) enhancing bug-detection capabilities to identify
diverse real-world software faults. These efforts aim to substantially narrow the gap between LLM-generated and
human-written tests in terms of reliability and practical utility.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their insightful comments and suggestions. This work was partially
supported by the National Key R&D Program of China (Grant No. 2024YFB4505902), the Major Project of ISCAS
(Grant No. ISCAS-ZD-202302), the Basic Research Project of ISCAS (Grant No. ISCAS-JCZD-202403), the Youth
Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos. Y2022044 and 2023121).

REFERENCES

[1] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. 2024. A3Test: Assertion-Augmented Automated Test Case
Generation. Inf. Softw. Technol. 176 (2024), 107565. https://doi.org/10.1016/j.infsof.2024.107565
[2] Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna Harper, Alexandru Marginean, Shubho
Sengupta, and Eddy Wang. 2024. Automated Unit Test Improvement using Large Language Models at Meta. In Companion Proceedings
of the 32nd ACM International Conference on the Foundations of Software Engineering (FSE). ACM, Porto de Galinhas, 185-196. https:
//doi.org/10.1145/3663529.3663839
[3] Nadia Alshahwan, Mark Harman, Alexandru Marginean, Rotem Tal, and Eddy Wang. 2024. Observation-Based Unit Test Generation at
Meta. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering (FSE). ACM, Porto
de Galinhas, 173-184. https://doi.org/10.1145/3663529.3663838
[4] Sushil Krishna Bajracharya, Joel Ossher, and Cristina Videira Lopes. 2010. Leveraging Usage Similarity for Effective Retrieval of
Examples in Code Repositories. In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). ACM, Santa Fe, NM, 157-166. https://doi.org/10.1145/1882291.1882316
[5] Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. 2024. Benchmarking Large Language Models in Retrieval-Augmented Generation.
In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, Vancouver, 17754-17762. https://doi.org/10.
1609/aaai.v38i16.29728
[6] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. 2024. ChatUniTest: A Framework for LLM-Based
Test Generation. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering (FSE).
ACM, Porto de Galinhas, 572-576. https://doi.org/10.1145/3663529.3663801
[7] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer. 2015. Modeling Readability to Improve Unit Tests. In
Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE). ACM, Bergamo, 107-118. https://doi.org/10.1145/2786805.2786838
[8] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and Problems. In Proceedings of the 25th IEEE International
Symposium on Software Reliability Engineering (ISSRE). IEEE Computer Society, Naples, 201-211. https://doi.org/10.1109/ISSRE.2014.11
[9] Sourav Deb, Kush Jain, Rijnard van Tonder, Claire Le Goues, and Alex Groce. 2024. Syntax Is All You Need: A Universal-Language
Approach to Mutant Generation. Proc. ACM Softw. Eng. 1, FSE (2024), 654-674. https://doi.org/10.1145/3643756
[10] DeepSeek-Al 2024. DeepSeek-V3 Technical Report. CoRR abs/2412.19437 (2024). https://doi.org/10.48550/arXiv.2412.19437
[11] Matthijs Douze, Alexandr Guzhva, Chenggi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas
Hosseini, and Hervé Jégou. 2024. The Faiss Library. CoRR abs/2401.08281 (2024). https://doi.org/10.48550/arXiv.2401.08281
[12] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Generation for Object-Oriented Software. In Proceedings of the
8th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE). ACM, Szeged, 416-419. https://doi.org/10.1145/2025113.2025179
[13] Davide Fucci, Simone Romano, Maria Teresa Baldassarre, Danilo Caivano, Giuseppe Scanniello, Burak Turhan, and Natalia Juristo.
2018. A Longitudinal Cohort Study on the Retainment of Test-Driven Development. In Proceedings of the 12th ACM/IEEE International

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1016/j.infsof.2024.107565
https://doi.org/10.1145/3663529.3663839
https://doi.org/10.1145/3663529.3663839
https://doi.org/10.1145/3663529.3663838
https://doi.org/10.1145/1882291.1882316
https://doi.org/10.1609/aaai.v38i16.29728
https://doi.org/10.1609/aaai.v38i16.29728
https://doi.org/10.1145/3663529.3663801
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1145/3643756
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.1145/2025113.2025179

(14]

(15]

16]

(17]

(18]

[26]

[27]

(28]

(33]

(34]

(35]

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 31

Symposium on Empirical Software Engineering and Measurement (ESEM). ACM, Oulu, 18:1-18:10. https://doi.org/10.1145/3239235.3240502
Vahid Garousi and Junji Zhi. 2013. A Survey of Software Testing Practices in Canada. J. Syst. Softw. 86, 5 (2013), 1354-1376. https:
//doi.org/10.1016/j.jss.2012.12.051

Robert Sebastian Herlim, Yunho Kim, and Moonzoo Kim. 2022. CITRUS: Automated Unit Testing Tool for Real-world C++ Programs.
In Proceedings of the 15th IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, Valencia, 400-410. https:
//doi.org/10.1109/ICST53961.2022.00046

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Trans. Software Eng. 37, 5
(2011), 649-678. https://doi.org/10.1109/TSE.2010.62

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large Language Models are Few-Shot Testers: Exploring LLM-Based General Bug
Reproduction. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering (ICSE). IEEE, Melbourne, 2312-2323.
https://doi.org/10.1109/ICSE48619.2023.00194

Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated Unit Test Generation for Python. In Companion Proceedings of the
44th IEEE/ACM International Conference on Software Engineering (ICSE). ACM/IEEE, Pittsburgh, PA, 168-172. https://doi.org/10.1145/
3510454.3516829

Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API Reference Documentation. IEEE Trans. Software Eng. 39, 9
(2013), 1264-1282. https://doi.org/10.1109/TSE.2013.12

Thomas J. McCabe. 1976. A Complexity Measure. IEEE Trans. Software Eng. 2, 4 (1976), 308-320. https://doi.org/10.1109/TSE.1976.233837
OpenALl 2022. Introducing ChatGPT. Technical Report. . https://openai.com/blog/chatgpt

OpenAl 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https://doi.org/10.48550/arXiv.2303.08774

Lotfi Ben Othmane, Pelin Angin, Harold Weffers, and Bharat K. Bhargava. 2014. Extending the Agile Development Process to Develop
Acceptably Secure Software. IEEE Trans. Dependable Secur. Comput. 11, 6 (2014), 497-509. https://doi.org/10.1109/TDSC.2014.2298011
Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-Directed Random Testing for Java. In Companion Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM, Montreal,
Quebec, 815-816. https://doi.org/10.1145/1297846.1297902

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random Test Generation. In
Proceedings of the 29th International Conference on Software Engineering (ICSE). IEEE Computer Society, Minneapolis, MN, 75-84.
https://doi.org/10.1109/ICSE.2007.37

Sanghoon Rho, Philipp Martens, Seungcheol Shin, and Yeoneo Kim. 2024. Taming the Beast: Fully Automated Unit Testing with Coyote
C++. CoRR abs/2401.01073 (2024). https://doi.org/10.48550/arXiv.2401.01073

Sanghoon Rho, Philipp Martens, Seungcheol Shin, Yeoneo Kim, Hoon Heo, and SeungHyun Oh. 2023. Coyote C++: An Industrial-Strength
Fully Automated Unit Testing Tool. In Joint Proceedings of the 5th International Workshop on Experience with SQuaRE series and its
Future Direction and the 11th International Workshop on Quantitative Approaches to Software Quality co-located with the 30th Asia Pacific
Software Engineering Conference (APSEC). CEUR-WS.org, Seoul, 45-50. https://ceur-ws.org/Vol-3612/QuASoQ_2023_Paper_01.pdf
Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code Llama: Open Foundation Models for Code. CoRR abs/2308.12950 (2023). https://doi.org/10.48550/arXiv.2308.12950

Per Runeson. 2006. A Survey of Unit Testing Practices. IEEE Softw. 23, 4 (2006), 22-29. https://doi.org/10.1109/MS.2006.91

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ramanathan, and Baishakhi Ray. 2024. Code-
Aware Prompting: A Study of Coverage-Guided Test Generation in Regression Setting using LLM. Proc. ACM Softw. Eng. 1, FSE (2024),
951-971. https://doi.org/10.1145/3643769

David Saft and Michael D. Ernst. 2004. Mock Object Creation for Test Factoring. In Proceedings of the 2004 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and Engineering (PASTE). ACM, Washington, DC, 49-51. https://doi.org/10.1145/
996821.996838

Arkadii Sapozhnikov, Mitchell Olsthoorn, Annibale Panichella, Vladimir Kovalenko, and Pouria Derakhshanfar. 2024. TestSpark: Intelli]
IDEA’s Ultimate Test Generation Companion. In Companion Proceedings of the 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE). ACM, Lisbon, 30-34. https://doi.org/10.1145/3639478.3640024

Max Schéfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An Empirical Evaluation of Using Large Language Models for Automated
Unit Test Generation. IEEE Trans. Software Eng. 50, 1 (2024), 85-105. https://doi.org/10.1109/TSE.2023.3334955

Sebastian Schweikl, Gordon Fraser, and Andrea Arcuri. 2022. EvoSuite at the SBST 2022 Tool Competition. In Proceedings of the 15th
IEEE/ACM International Workshop on Search-Based Software Testing (SBST@ICSE). IEEE, Pittsburgh, PA, 33-34. https://doi.org/10.1145/
3526072.3527526

Sina Shamshiri. 2015. Automated Unit Test Generation for Evolving Software. In Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/FSE).
ACM, Bergamo, 1038-1041. https://doi.org/10.1145/2786805.2803196

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3239235.3240502
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1109/ICST53961.2022.00046
https://doi.org/10.1109/ICST53961.2022.00046
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1109/TSE.1976.233837
https://openai.com/blog/chatgpt
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1109/TDSC.2014.2298011
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.48550/arXiv.2401.01073
https://ceur-ws.org/Vol-3612/QuASoQ_2023_Paper_01.pdf
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1145/3643769
https://doi.org/10.1145/996821.996838
https://doi.org/10.1145/996821.996838
https://doi.org/10.1145/3639478.3640024
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1145/3526072.3527526
https://doi.org/10.1145/3526072.3527526
https://doi.org/10.1145/2786805.2803196

32

(36]

(37]

(38]

(39]

(47]

(48]

(49]

(50]
(51]

(52]

(53]

(55]

[56]

« Zhanget al.

Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea Arcuri. 2015. Do Automatically Generated
Unit Tests Find Real Faults? An Empirical Study of Effectiveness and Challenges (T). In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE Computer Society, Lincoln, NE, 201-211. https://doi.org/10.1109/ASE.2015.86
Jiho Shin, Sepehr Hashtroudi, Hadi Hemmati, and Song Wang. 2024. Domain Adaptation for Code Model-Based Unit Test Case
Generation. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, Vienna,
1211-1222. https://doi.org/10.1145/3650212.3680354

Davide Spadini, Mauricio Finavaro Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017. To Mock or Not to Mock?: An Empirical
Study on Mocking Practices. In Proceedings of the 14th International Conference on Mining Software Repositories (MSR). IEEE Computer
Society, Buenos Aires, 402-412. https://doi.org/10.1109/MSR.2017.61

Davide Spadini, Mauricio Finavaro Aniche, Magiel Bruntink, and Alberto Bacchelli. 2019. Mock Objects for Testing Java Systems - Why
and How Developers Use Them, and How They Evolve. Empir. Softw. Eng. 24, 3 (2019), 1461-1498. https://doi.org/10.1007/s10664-018-
9663-0

Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. 2025. Reinforcement Learning from Automatic
Feedback for High-Quality Unit Test Generation. In Proceedings of the 6th IEEE/ACM International Workshop on Deep Learning for Testing
and Testing for Deep Learning (DeepTest@ICSE). IEEE, Ottawa, ON, 37-44. https://doi.org/10.1109/DeepTest66595.2025.00011

Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. 2024. ChatGPT vs SBST: A Comparative Assessment of Unit Test Suite Generation.
IEEE Trans. Software Eng. 50, 6 (2024), 1340-1359. https://doi.org/10.1109/TSE.2024.3382365

Dave Thomas and Andy Hunt. 2002. Mock Objects. IEEE Softw. 19, 3 (2002), 22-24. https://doi.org/10.1109/MS.2002.1003449

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2022. Generating Accurate Assert Statements for Unit
Test Cases using Pretrained Transformers. In Proceedings of the 3rd IEEE/ACM International Conference on Automation of Software Test
(AST@ICSE). ACM/IEEE, Pittsburgh, PA, 54-64. https://doi.org/10.1145/3524481.3527220

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software Testing With Large Language
Models: Survey, Landscape, and Vision. IEEE Trans. Software Eng. 50, 4 (2024), 911-936. https://doi.org/10.1109/TSE.2024.3368208
Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. 2024. HITS: High-Coverage LLM-Based Unit Test Generation via Method Slicing. In
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE). ACM, Sacramento, CA, 1258-1268.
https://doi.org/10.1145/3691620.3695501

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. 2024. C-Pack: Packed Resources for General
Chinese Embeddings. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). ACM, Washington, DC, 641-649. https://doi.org/10.1145/3626772.365787

Tao Xie. 2006. Augmenting Automatically Generated Unit-Test Suites with Regression Oracle Checking. In Proceedings of the 20th
European Conference on Object-Oriented Programming (ECOOP). Springer, Nantes, 380-403. https://doi.org/10.1007/11785477_23
Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are the Code Snippets What We Are Searching for? A
Benchmark and an Empirical Study on Code Search with Natural-Language Queries. In Proceedings of the 27th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, London, ON, 344-354. https://doi.org/10.1109/SANER48275.
2020.9054840

Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou, Guangtai Liang, Qianxiang Wang, and
Junjie Chen. 2024. On the Evaluation of Large Language Models in Unit Test Generation. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM, Sacramento, CA, 1607-1619. https://doi.org/10.1145/3691620.3695529
Yanming Yang, Xin Xia, David Lo, and John C. Grundy. 2022. A Survey on Deep Learning for Software Engineering. ACM Comput. Surv.
54, 10s (2022), 206:1-206:73. https://doi.org/10.1145/3505243

Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng, and Yiling Lou. 2024. Evaluating and Improving ChatGPT
for Unit Test Generation. Proc. ACM Softw. Eng. 1, FSE (2024), 1703-1726. https://doi.org/10.1145/3660783

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Yuxiao Dong, and Jie Tang. 2024. NaturalCodeBench:
Examining Coding Performance Mismatch on HumanEval and Natural User Queries. In Findings of the Association for Computational
Linguistics (ACL). Association for Computational Linguistics, Bangkok, 7907-7928. https://doi.org/10.18653/v1/2024.findings-acl.471
Yuwei Zhang. 2024. Replicate Package of CITYWALK. Zenodo. https://zenodo.org/records/14022506

Yuwei Zhang, Zhi Jin, Ze-Jun Wang, Ying Xing, and Ge Li. 2025. SAGA: Summarization-Guided Assert Statement Generation. J. Comput.
Sci. Technol. 40, 1 (2025), 138-157. https://doi.org/10.1007/s11390-023-2878-6

Ziyao Zhang, Chong Wang, Yanlin Wang, Ensheng Shi, Yuchi Ma, Wanjun Zhong, Jiachi Chen, Mingzhi Mao, and Zibin Zheng. 2025.
LLM Hallucinations in Practical Code Generation: Phenomena, Mechanism, and Mitigation. Proc. ACM Softw. Eng. 2, ISSTA (2025),
481-503. https://doi.org/10.1145/3728894

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang, Yang Li, Teng Su, Zhilin
Yang, and Jie Tang. 2023. CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Benchmarking on HumanEval-X. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). ACM, Long Beach, CA, 5673-5684.
https://doi.org/10.1145/3580305.3599790

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1145/3650212.3680354
https://doi.org/10.1109/MSR.2017.61
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1109/DeepTest66595.2025.00011
https://doi.org/10.1109/TSE.2024.3382365
https://doi.org/10.1109/MS.2002.1003449
https://doi.org/10.1145/3524481.3527220
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1145/3691620.3695501
https://doi.org/10.1145/3626772.365787
https://doi.org/10.1007/11785477_23
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1145/3691620.3695529
https://doi.org/10.1145/3505243
https://doi.org/10.1145/3660783
https://doi.org/10.18653/v1/2024.findings-acl.471
https://zenodo.org/records/14022506
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1145/3728894
https://doi.org/10.1145/3580305.3599790

Enhancing LLM-Based C++ Unit Test Generation via CITYWALK « 33

[57] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda
He, Indraneil Paul, Simon Brunner, Chen Gong, James Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming
Xu, Zhihan Zhang, Prateek Yadav, and et al. 2025. BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and
Complex Instructions. In Proceedings of the 13th International Conference on Learning Representations (ICLR). OpenReview.net, Singapore.
https://openreview.net/forum?id=YrycTjlILO

Received 24 January 2025; revised 5 August 2025; accepted 10 August 2025

ACM Trans. Softw. Eng. Methodol.

https://openreview.net/forum?id=YrycTjllL0

	Abstract
	1 Introduction
	2 Methodology
	2.1 Task Formulation
	2.2 Project Repository Pre-Processing
	2.3 Project Dependency Extraction
	2.4 Intention Context Retrieval
	2.5 Empirical Observation
	2.6 Unit Test Generation

	3 Experimental Setup
	3.1 Research Questions
	3.2 Benchmark
	3.3 Baselines
	3.4 Metrics
	3.5 Implementation

	4 Results and Analysis
	4.1 Answering RQ1
	4.2 Answering RQ2

	5 Discussion
	5.1 Effectiveness of CITYWALK in Bug Detection
	5.2 Efficiency of CITYWALK
	5.3 Readability and Usability of Test Cases Generated by CITYWALK
	5.4 False-Positive Executable Test Cases
	5.5 Threats to Validity

	6 Related Work
	6.1 Program Analysis-Based Automated Unit Testing Tools
	6.2 Pre-Trained Language Model-Based Automated Unit Test Generation
	6.3 LLM-based Automated Unit Test Generation

	7 Conclusion and Future Work
	Acknowledgments
	References

