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Bug fixing holds significant importance in software development and maintenance. Recent research has made substantial
strides in exploring the potential of large language models (LLMs) for automatically resolving software bugs. However,
a noticeable gap in existing approaches lies in the oversight of collaborative facets intrinsic to bug resolution, treating
the process as a single-stage endeavor. Moreover, most approaches solely take the buggy code snippet as input for LLMs
during the patch generation stage. To mitigate the aforementioned limitations, we introduce a novel stage-wise framework
named PATCH. Specifically, we first augment the buggy code snippet with corresponding dependence context and intent
information to better guide LLMs in generating the correct candidate patches. Additionally, by taking inspiration from bug
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management practices, we decompose the bug-fixing task into four distinct stages: bug reporting, bug diagnosis, patch
generation, and patch verification. These stages are performed interactively by LLMs, aiming to simulate the collaborative
behavior of programmers during the resolution of software bugs. By harnessing these collective contributions, PATCH
effectively enhances the bug-fixing capability of LLMs. We implement PATCH by employing the powerful dialogue-based
LLM ChatGPT. Our evaluation on the widely used bug-fixing benchmark BFP demonstrates that PATCH has achieved better
performance than state-of-the-art LLMs.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Bug Fixing, Large Language Model, Bug Management, Multi-Agent Collaboration

1 INTRODUCTION
Software systems, by virtue of inherent complexity and inadequate testing, inevitably contain bugs that can lead
to substantial losses [88, 101]. To expedite the resolution of software bugs, automatic bug fixing [105] has been
proposed as a means to mitigate the costs associated with software debugging. Traditional approaches generally
entail mutating the buggy code through predefined search strategies [19, 20]. Nevertheless, these approaches face
challenges primarily due to the time-intensive nature of validation strategies, such as verifying the correctness of
generated patches using exhaustive test suites. With the rapid advancements in deep learning (DL), there has
been a surge of interest in neural-based bug-fixing approaches [104, 112], exploiting the powerful representation
capabilities of DL models to autonomously learn bug-fixing patterns. However, existing neural-based approaches
[30, 47, 98, 107, 114, 115] collect historical bug-fixing datasets sourced from open-source code repositories for
supervised training, which may restrict their generalizability to unseen bug types [90]. More recently, researchers
have commenced leveraging large language models (LLMs) for bug fixing without the necessity of fine-tuning.
The application of LLMs to bug fixing [25, 28, 89] involves devising prompts that can consist of either the buggy
code alone or a combination of the buggy code and a few task-specific bug-fixing pairs, with the goal for LLMs
to learn from the provided prompts and generate patches for the given buggy code. While current LLM-based
approaches have demonstrated promising results compared to previous neural-based techniques, they still possess
certain limitations as illustrated in Figure 1.

Limitation 1: Missing additional information associated with the buggy code as guidance for LLMs.
The left part of Figure 1 presents a motivating example derived from the real-world bug-fixing benchmark BFP
[81], which comprises the buggy method, highlighting its fault location (i.e., the buggy hunk), alongside the
ground-truth patch written by the corresponding programmer. When provided with insufficient input information,
the LLM outputs an incorrect candidate patch, predicting a different token (i.e., the variable md5hex) based on the
buggy method content to replace the input parameter (i.e., the variable md5) of the function setMd5sum invoked
via the variable meta within the buggy hunk. Notably, even experienced programmers find it challenging to
identify the appropriate patch for fixing the buggy hunk by examining the code snippet of the buggy method
alone. In this case, the object DefaultMetadata initialized by meta represents a cross-file data dependency
within the corresponding code repository, which is evident from the import information (framed by the blue
rectangle) provided in the buggy class file. Intuitively, when the repository-level dependencies (i.e., the contextual
information of setMd5sum) are utilized as prompt inputs, the LLM can deduce that the data type of md5 (i.e.,
byte[]) does not conform to the required input parameter type of setMd5sum (i.e., String). Furthermore, when
human programmers encounter a bug during the real-world software development environment, they begin
by debugging the buggy hunk, considering its surrounding context, and analyzing compiler-generated error
messages to identify the root cause of the bug. Subsequently, they document their intent by summarizing the key
information required to fix the corresponding bug via natural language. By considering the intent description
provided by the human programmer (i.e., fixing different data type errors), we hypothesize that the LLM can
reason more effectively about the necessary modifications for patching the buggy hunk.
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Natural Language Description
of Human Programmer Intent

Repository-Level Dependence Context

repository

input

LLM

meta.setMd5sum(md5hex);

LLM-Generated
Candidate Patch

output

package ai.subut.kurjun.metadata.common;
...
public class DefaultMetadata implements SerializableMetadata {
...
    private String md5sum;
...
    public void setMd5sum(String md5sum) {...}
...
}

Fixing different data type errors.

1. Missing additional information as guidance for LLMs

2. Treating bug fixing as a single-step, end-to-end process

package ai.subut.kurjun.metadata.storage.sql;
...
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
...
import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;
...
import ai.subut.kurjun.metadata.common.DefaultMetadata;
...
class SqlDbPackageMetadataStore implements PackageMetadataStore {
...
    private DefaultMetadata makeMetadata(ResultSet current) throws SQLException, DecoderException {
        String md5hex = current.getString(SqlStatements.CHECKSUM_COLUMN);
        byte[] md5 = Hex.decodeHex(md5hex.toCharArray());
        DefaultMetadata meta = new DefaultMetadata();
        meta.setMd5sum(md5); // Buggy Hunk
        meta.setMd5sum(new String(md5)); // Human-Written Patch
        meta.setName(current.getString(SqlStatements.NAME_COLUMN));
        meta.setVersion(current.getString(SqlStatements.VERSION_COLUMN));
        meta.setSerialized(current.getString(SqlStatements.DATA_COLUMN));
        return meta;
    }
...
}

－
＋

Code Snippet of the Buggy Method and Associated Dependence Context within the Buggy Class File

Fig. 1. Limitations of Existing LLM-Based Bug-Fixing Approaches.

Limitation 2: Treating the task of bug fixing as a single-step, end-to-end procedure. In practice,
bug fixing is a multifaceted task wherein every discovered bug undergoes a specific and intricate process
before being effectively resolved [14]. Although LLMs have demonstrated capabilities akin to human logical
understanding [86], they continue to struggle with resolving bugs that involve nested program structures and
cross-file dependence relationships. Software debugging inherently necessitates multi-step reasoning, a process
that poses a considerable obstacle for LLMs that predominantly rely on pattern recognition rather than authentic
cognitive processes. Consequently, this reliance limits the effectiveness of LLMs in resolving complex bugs.
Human programmers, by contrast, tend to seek teamwork as a means of tackling intricate debugging-related tasks
in software engineering (SE) practices [43, 51]. However, current LLM-based bug-fixing approaches typically focus
on directly utilizing LLMs to generate candidate patches under the setting of zero-shot or few-shot prompting
paradigms, neglecting the interactive and collaborative behaviors exhibited by human programmers (e.g., one
reviewer will be responsible for verifying the correctness of the candidate patch generated by the corresponding
developer) during the resolution of complex software bugs. Zeng et al. [102] conducted a comprehensive evaluation
of bug-fixing performance using eight open-access state-of-the-art LLMs on the BFP benchmark. Their empirical
findings reveal that all the evaluated LLMs exhibit low accuracy, with performance rates below 15% in the task of
bug fixing. Given that the effectiveness of LLMs is highly contingent on the surface structure of the prompts
used [109], it is imperative to explore more effective prompting techniques to enhance the ability of LLMs in
generating correct patches.

To bridge the gap between the capabilities of LLMs and human programmers in bug fixing, this
paper presents a stage-wise framework, referred to as PATCH. This framework introduces two novel
mechanisms that empower the LLM with ProgrAmmer-inTent guidance and Collaborative-beHavior simulation.
These mechanisms effectively address the two aforementioned limitations, resulting in a significant improvement
in the bug-fixing performance of LLMs. The specific details of PATCH are outlined as follows.

Novelty 1: Augmenting the buggy code snippet with additional dependence context and guided
programmer’s intent as input to the LLM. This paper employs the widely-used benchmark BFP [81] for
evaluation, which includes an extensive collection of paired bug-fixing instances across a diverse range of
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Bug
Reporting

Stage 1

Tester

Patch
Verification

Stage 4

Reviewer

Buggy Code Fixed Code

Bug
Diagnosis

Patch
Generation

Stage 2 Stage 3

Developer

Fig. 2. The Brief Structure of PATCH.

real-world bugs, rather than limiting the scope to specific bug types [49]. We commence by enhancing the buggy
code snippet through the incorporation of code dependency contexts extracted from both the class and repository
levels. Additionally, we integrate the programmer’s intent, articulated in natural language, as supplementary
guidance. Effective bug fixing necessitates a comprehensive grasp of both code semantics and the intent
of human programmers. This augmentation aims to guide LLMs in generating effective and accurate
candidate patches. It is vital to leverage sufficient contextual information as fixing ingredients for patch
generation. Moreover, understanding the context of a buggy code snippet is essential for human programmers
in identifying the root cause of the discovered bug and proposing potential bug-fixing suggestions. Therefore,
collecting adequate contextual information from the corresponding GitHub repository can be more effective in
generating the correct patches. Furthermore, given the lack of test suites for the BFP benchmark, we leverage
commit messages, which are written in natural language, as proxies for the programmer’s intent. These messages
serve as crucial artifacts within the continuous software development process [92]. As illustrated in Figure 1,
it is important to note that the information provided solely describes the type of bug (e.g., fixing different data
type errors) without detailing the specific process required for its resolution. Consequently, this information can
be utilized to accurately simulate the actual development process, minimizing the risk of information leakage
issue that could lead to unintended advantages for LLMs. Recent empirical investigations [7] have shown that
leveraging the commit messages authored by corresponding programmers as supplementary guidance enhances
the performance of LLMs by narrowing down the search space. Thus, we collect the bug-fixing commits associated
with the buggy code snippets from GitHub to automatically simulate the programmer’s intent. Such information
facilitates LLMs in better comprehending the desired fixing goals, thereby improving the generation of candidate
patches.

Novelty 2: Empowering the bug-fixing performance of LLMs by simulating the collaborative behav-
iors of programmers via effective bug management practices. While LLMs trained on code have achieved
commendable efficacy in aiding human programmers, their proficiency diminishes notably when confronted with
complex debugging-related SE tasks that require multi-step logical reasoning within programs. More recently,
researchers have demonstrated the impressive capabilities of LLMs in generating helpful outcomes when tasks are
disassembled into a set of modular units with precise queries [53, 86]. Recognizing the significance of an efficient
bug management process for successful bug fixing [58], we decompose the task of bug fixing into four distinct
stages: bug reporting, bug diagnosis, patch generation, and patch verification. Drawing inspiration from bug
management practices, we closely examine the programmers involved at various stages of the bug’s
life cycle and analyze the impact of their interactions on improving the efficiency of bug fixing. As
depicted in Figure 2, PATCH aims to imitate the collaborative problem-solving abilities exhibited by programmers
(i.e., the tester, the developer, and the reviewer) throughout the entire life cycle of a bug. To be specific, effective
bug resolution initially relies on the tester’s comprehensive understanding of the bug, leading to the filing of a
detailed bug report. This report provides essential information to the developer for successfully resolving the
bug. Within PATCH, the developer has a two-fold responsibility. Firstly, the developer engages in the diagnosis
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process by consulting historical bug corpus and conducting self-debugging. Secondly, the developer generates the
candidate patch, guided by the information obtained in the previous stages. Since the correctness of the candidate
patch generated on the first attempt cannot be guaranteed, the reviewer’s involvement in PATCH becomes crucial.
The reviewer provides the feedback and collaborates with the developer throughout the workflow, playing a vital
role in ensuring the correctness of the generated patch.

In summary, PATCH breaks down the bug-fixing task into smaller, more manageable subtasks with the aim of
improving the accuracy of automatic bug fixing by incorporating additional information and implementing effi-
cient bug management practices. Moreover, by involving multiple programmers, PATCH can enable the inclusion
of diverse perspectives and feedback to facilitate the bug-fixing process, thereby mitigating misunderstandings
and ensuring the quality of the generated candidate patches. Given the remarkable advancements in generative
artificial intelligence (AI), LLMs (e.g., ChatGPT [59]) have exhibited commendable performance across various SE
tasks [3, 56, 63], opening avenues for inter-model interaction and collaboration. Specifically, PATCH employs
three ChatGPT agents, each playing a distinct programmer role as showcased in Figure 2, to emulate collaborative
efforts in real-world bug management practices. The main contributions of this paper can be summarized as
follows:
• We present the first attempt at enhancing the capabilities of LLMs for automatic bug fixing by leveraging

effective bug management practices. Our alignment approach simulates the interactive behavior of
programmers engaged in bug management, which enables LLMs to collaborate and generate correct
patches.
• We introduce a stage-wise framework called PATCH, consisting of three ChatGPT agents, each responsible

for specific stages within the bug management process via system instructions and prompts. Our proposed
framework shifts the focus from end-to-end bug fixing to a conversation-driven text-generation task,
enhancing the understanding and utilization of LLMs in bug fixing.
• We construct a meta-rich bug-fixing benchmark that incorporates additional dependence context and the

programmer’s intent associated with the buggy code snippet. This augmentation aims to provide better
guidance to LLMs in generating the correct patches for complex bugs.
• We conduct extensive experiments on publicly available bug-fixing benchmarks and thoroughly evaluate

each component of the proposed framework. The experimental results demonstrate that PATCH surpasses
state-of-the-art LLMs, highlighting its superior performance.
• We publicly release the replicate package [106] of PATCH on Zenodo. The open-sourced artifacts can

better support the researchers in the SE community in reproducing PATCH.
Article Organization. The remainder of this paper is organized as follows: Section 2 introduces in detail the

proposed framework. Section 3 and Section 4 provide the experimental setups and results of our research. Section 5
presents case studies and discloses the threats to the validity of our approach. Section 6 describes the related
work. Section 7 draws conclusions and indicates directions for future work.

2 THE PROPOSED FRAMEWORK PATCH
In order to mitigate the limitations discussed in Section 1 concerning existing approaches, we present a novel
stage-wise framework dubbed PATCH. This framework embodies a programmer-like behavior simulation aimed
at augmenting LLMs in the task of bug fixing, leveraging beneficial SE practices (i.e., bug management). Within
the process of bug management practice, human programmers engage in collaborative efforts to discover, report,
and resolve software bugs, constituting a pivotal facet of the software development life cycle. Such standardized
practices not only enhance collaboration efficacy within development teams but also serve to uphold software
quality. With this inspiration, our main objective in this paper is to design system components that emulate the
cognitive processes of different programmers involved in the bug management process by utilizing the powerful
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conversation-based ChatGPT model. As illustrated in Figure 3, PATCH involves three ChatGPT agents (i.e.,
ChatGPTTester, ChatGPTDeveloper, and ChatGPTReviewer), each assigned to specific stages (i.e., Bug Reporting,
Bug Diagnosis, Patch Generation, and Patch Verification) within the bug management process.

② Bug Diagnosis
(Section 2.3)

④ Patch Verification (Section 2.5)

Prompt for Bug Reporting

Buggy CodeRepository Code FileGitHub

Dependence Context Buggy Method under Perfect Fault LocalizationCommit Message

Historical Code Corpus

ChatGPTTester

Retrieved Similar Demonstrations

ChatGPTDeveloper

ChatGPTReviewer

Bug Report

query

output

Prompt for Code Explanation Prompt for Pattern Summarization

Bug-Fixing PatternCode Explanation
output

ChatGPTDeveloper

query

Candidate Patch

output

Prompt for Patch Verification

Review Feedback
query

Prompt for Initial Patch Generation

query query

output (pass) queryoutput (not pass)

Prompt for Iterative Patch GenerationFixed Code

① Bug Reporting 
(Section 2.2)

③ Patch Generation (Section 2.4)

Information 
Flow

Execution 
Flow

Augmented Buggy Content

Fig. 3. Overview of PATCH.

2.1 Task Formulation
Before delving into the details of PATCH, this subsection provides a formal description of the bug-fixing task.
Following recent studies that utilize LLMs for bug fixing [66, 75], this paper focuses on fixing single-hunk bugs
written in the Java programming language. In this scenario, the generation of candidate patches necessitates
programmodifications, such as deletions, insertions, or replacements, either at a single line or within a consecutive
chunk of code. This process operates under the assumption of perfect fault localization, meaning that LLMs are
aware of the location information pertaining to the buggy code that requires to be fixed.

Specifically, this paper approaches the bug-fixing problem as a conversation-driven text-generation task
leveraging the advancements in LLMs. Unlike existing LLM-based bug-fixing techniques, which generate can-
didate patches directly from the given buggy code, PATCH enhances the patch generation process with aug-
mented buggy content (as shown in the upper part of Figure 3), consisting of the buggy code snippet with

additional dependence context (if exists) at the class and repository levels, the programmer’s intent (i.e.,

commit message ) conveyed in the correspondingGitHub commit, and similar bug-fixing demonstrations

retrieved from the collected historical code corpus. Regarding the extraction of the dependence context , we
initially employ the static analysis tool Spoon [65] to parse the associated code files (i.e., the buggy class file and
other dependent class files pertinent to cross-file dependencies) into abstract syntax trees (ASTs). Subsequently,
we extract the necessary contextual dependencies related to the buggy method via data-flow analysis (e.g.,
definition-use chains). While traversing the AST of the buggy class file, PATCH gathers three types of information
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as class-level dependencies: the imports of project-specific library depended upon by the buggy method, the
global variables (defined within the buggy class scope) utilized in the buggy method, and the signatures of
methods invoked within the buggy method. For repository-level dependencies, we extract the global variables
utilized within the buggy method, along with the signatures of methods invoked by the buggy method, from the
dependent classes that are imported in the buggy class. Due to the input token length limitation of LLMs, we
restrict the extraction to only one layer of cross-file dependencies. Formally, given a new single-hunk bug, we
propose leveraging the LLMs within PATCH to generate a candidate patch ? for fixing the corresponding bug. The
bug-fixing task is defined as ? = LLM(PROMPT). Let PROMPT = I ⊕ C ⊕ F be the input prompt, where I denotes
the system instruction for prompting LLM to align the collaborative behavior of human programmers, C denotes
the augmented buggy content of the given single-hunk bug provided by PATCH, F denotes different dimensions
of feedback information from earlier bug management stages, and ⊕ denotes the concatenation operation. Given
PROMPT, the goal of LLM is to learn the conditional probability P(? |PROMPT).

When engaged in a single-turn conversation, the system instruction and user-defined prompt are used as
input to generate an assistant message with ChatGPT. The system instruction plays a crucial role in defining
the behavior of the assistant, allowing the agents to simulate the corresponding programmer behaviors. The
user-defined prompt serves as a means to convey requests or comments for the assistant to respond to. By
utilizing specific prompts, PATCH effectively aligns the collaborative abilities of the programmers. This enables
an interactive bug-fixing process, where the outputs from earlier stages are used to construct the input prompts
for subsequent stages. As a result, PATCH optimizes the ability of LLMs to generate correct patches that fix the
given bugs. While PATCH is a general framework capable of being applied to various LLMs, this paper employs
the state-of-the-art ChatGPT model, which is tailored for dialogue-based interactions.

2.2 Bug Reporting
During the initial phase of bug management, the tester identifies a bug within the source code and proceeds to
file a detailed report elucidating the nature of the bug. In practice, bug reports play a crucial role in bug fixing
as they provide the developer with essential information regarding the discovered bug. These specific details
significantly assist the developer in resolving the bug [117, 118]. To simulate the tester’s behavior, PATCH is
designed to generate an initial bug report that outlines the underlying cause of the given buggy code.

Figure 4 illustrates the prompt generated to query ChatGPTTester during the bug reporting stage, along
with the corresponding output. The System Instruction specifies the persona adopted by ChatGPTTester in
its responses. The primary objective of ChatGPTTester is to report the root cause of the given buggy method

based on its fault location (i.e., buggy hunk ). To ensure a highly relevant response, the User-Defined Prompt
provides crucial details and context to ChatGPTTester, i.e., the definition of the bug reporting subtask and the
augmented buggy content required for the bug reporting stage. Additionally, we use special delimiters (e.g.,
[Task Definition]) to explicitly indicate distinct parts of the User-Defined Prompt, facilitating ChatGPTTester

to better comprehend the relationships between various contexts. Following the provided prompt, ChatGPTTester

produces a bug report that describes the bug’s nature and its impact on the given buggy method according to

the guidance information from the dependence context and the commit message . As shown in the generated

bug report , ChatGPTTester correctly identifies the root cause of the buggy hunk (i.e., It’s possible that the
setMd5sum method expects a different data type than the md5 byte array, leading to a type error.). This information
will then be assigned to the developer to assist in the resolution of the discovered bug during the subsequent
stage.
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Prompt Generation for Bug Reporting
System Instruction
You are an experienced software tester. Your goal is to output the bug report in your [Response].
User-Defined Prompt
[Task Definition]
In the bug reporting sub-task, you will receive one [Buggy Content]. Please report the root cause 
of the given [Buggy Hunk] according to the guidance information from [Commit Message].
[Buggy Content]
[Dependence Context] + [Buggy Method] + [Buggy Hunk] + [Commit Message]
[Response]

output

[Bug Report]
The root cause of the buggy hunk is likely 
to be issues with mismatched data types, 
possibly in the setMd5sum method or the 
md5 byte array variable. It's possible that 
the setMd5sum method expects a different 
data type than the md5 byte array, leading 
to a type error. This could be due to a 
mismatch between the expected data type 
for the MD5 checksum and the actual data 
type being passed to the setMd5sum...

ChatGPTTester

Augmented Buggy Content

[Class-Level Dependence Context]
import ai.subut.kurjun.metadata.common.DefaultMetadata;
[Repository-Level Dependence Context]
public void setMd5sum(String md5sum) {};

[Buggy Method]
private DefaultMetadata makeMetadata(ResultSet current) throws SQLException, DecoderException {
    String md5hex = current.getString(SqlStatements.CHECKSUM_COLUMN);
    byte[] md5 = Hex.decodeHex(md5hex.toCharArray());
    DefaultMetadata meta = new DefaultMetadata();
    meta.setMd5sum(md5);
    meta.setName(current.getString(SqlStatements.NAME_COLUMN));
    meta.setVersion(current.getString(SqlStatements.VERSION_COLUMN));
    meta.setSerialized(current.getString(SqlStatements.DATA_COLUMN));
    return meta;
}

[Commit Message]
Fixing different data type errors.

[Buggy Hunk]
meta.setMd5sum(md5);

query

Fig. 4. A Prompting Example of the Tester’s Behavior during the Bug Reporting Stage.

2.3 Bug Diagnosis
Upon receiving a bug report from the tester, the developer commences the diagnosis process by utilizing the
available information provided in the report. Practically, when assigned a newly discovered bug, the developer first
engages in debugging practices. This involves carefully analyzing the source code line by line and documenting
their findings in natural language. This self-guided approach enhances the efficiency of bug fixing without the
need for external expert guidance [10, 64]. Furthermore, the developer consults historical bug corpora to extract
bug-fixing patterns that shed light on the causes and resolutions of similar issues. This mining process aids in
acquiring valuable knowledge pertaining to the reasons behind bug occurrences and the corresponding fixes
[61, 77]. To mimic the developer’s diagnostic behavior, PATCH initiates by employing rubber duck debugging
techniques to provide a detailed, line-by-line explanation for the given buggy code snippet. Then, PATCH retrieves
relevant bug-fixing demonstrations for pattern summarization by analyzing the paired buggy and fixed methods.
These two forms of guidance serve to aid the developer in generating the correct patches.

2.3.1 Code Explanation. Figure 5 illustrates an example prompt alongside the corresponding output obtained dur-
ing the code explanation phase.The primary objective ofChatGPTDeveloper is to elucidate the given buggy method
using the rubber duck debugging technique. This debugging process mimics a common practice employed by hu-
man programmers, which involves articulating their code line-by-line using natural language, as if conversingwith
a rubber duck [76]. Inspired by the principle of rubber ducking, PATCH specializes the persona ofChatGPTDeveloper

and its responses in the System Instruction. Unlike traditional line-by-line explanations, PATCH prompts
ChatGPTDeveloper to explain the buggy method with additional program context, i.e., functional description.

According to the [Task Definition], ChatGPTDeveloper initially summarizes the intent of the buggy method ,
providing a functional description to clarify the program’s expected behavior. Subsequently, ChatGPTDeveloper

explains the code implementation of the buggy method with the guidance of method summary generated

by ChatGPTDeveloper. This operation ensures that ChatGPTDeveloper handles the buggy method within a suffi-

ciently concise context. Consequently, ChatGPTDeveloper is able to provide a detailed code explanation of the
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query

output

ChatGPTDeveloper

Augmented Buggy Content

Prompt Generation for Code Explanation
System Instruction
You are an experienced software developer. Your goal is to explain the buggy code in your [Response].
User-Defined Prompt
[Task Definition]
In the code explanation sub-task, you will receive one [Buggy Content]. Please summarize the functional intent of 
[Buggy Method] first, and then explain the [Buggy Method] line-by-line with rubber duck debugging technique.
[Buggy Content]
[Buggy Method]
[Response]

[Method Summary]
The functional intent of the method 
is to create a DefaultMetadata 
object from the data retrieved from 
a ResultSet object.
[Code Explanation]
1. This line retrieves the value of 
CHECKSUM_COLUMN from the 
ResultSet object current and assign 
it to the md5hex variable.
...
8. Finally, the DefaultMetadata 
object meta is returned.

[Buggy Method]
private DefaultMetadata makeMetadata(ResultSet current) throws SQLException, DecoderException {
    String md5hex = current.getString(SqlStatements.CHECKSUM_COLUMN);
    byte[] md5 = Hex.decodeHex(md5hex.toCharArray());
    DefaultMetadata meta = new DefaultMetadata();
    meta.setMd5sum(md5);
    meta.setName(current.getString(SqlStatements.NAME_COLUMN));
    meta.setVersion(current.getString(SqlStatements.VERSION_COLUMN));
    meta.setSerialized(current.getString(SqlStatements.DATA_COLUMN));
    return meta;
}

Fig. 5. A Prompting Example of the Developer’s Behavior during the Code Explanation Stage.

[Retrieved Similar Demonstrations]
Example 1: [Buggy Method] ... 
Example 1: [Fixed Method] ...
... ...

ChatGPTDeveloper

Augmented Buggy Content Prompt Generation for Pattern Summarization
System Instruction
You are an experienced software developer. Your goal is to output the fix pattern in your [Response].
User-Defined Prompt
[Task Definition]
In the pattern summarization sub-task, you will receive [Bug-Fixing Pairs] similar to the given bug. 
Please summarize the common bug-fixing patterns according to the [Retrieved Similar Demonstrations].
[Bug-Fixing Pairs]
[Retrieved Similar Demonstrations]
[Response]

[Bug-Fixing Pattern]
The bug-fixing patterns summarized 
in the retrieved examples involve...

Bug-Fixing 
Dataset

BM25 
Retriever

retrieve

query

output

Fig. 6. A Prompting Example of the Developer’s Behavior during the Pattern Summarization Stage.

buggy content, thereby enhancing the efficiency of debugging without relying on additional artifacts such as unit
tests.

2.3.2 Pattern Summarization. As depicted in Figure 6, the main goal of ChatGPTDeveloper at this phase is to
summarize bug-fixing patterns by analyzing similar demonstrations retrieved from the historical code corpus.
The initial step involves retrieving similar programs from a collected bug-fixing dataset based on the given
buggy content. To achieve this, PATCH employs the sparse keyword-based BM25 score [68] as the retrieval
metric. The BM25 score, a probabilistic model widely used in previous studies [38, 85], operates as a bag-of-words
retriever, estimating the lexical-level similarity between two sentences. Higher BM25 scores indicate greater
similarity between the sentences. Let D = {(�8 , �8 , !8 ,�8 )} |D |8=1 represent a bug-fixing dataset containing |D|
4-tuple bug-fixing pairs, where �8 denotes the i-th buggy method, �8 denotes its paired fixed version, !8 denotes
the location of the corresponding bug (i.e., the buggy hunk), and �8 denotes the mined GitHub commit message
related to the bug. Specifically, PATCH respectively retrieves the most relevant bug-fixing pair from D based
on a multi-faceted buggy context C ← {1, ;, 2}, where 1 denotes the given buggy method, ; denotes its buggy
hunk, and 2 denotes the commit message. For instance, PATCH selects the top-1 retrieved output from the
BM25 retriever based on the computed similarity score 5 (�8 , 1) when considering the context of buggy method,
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where 5 denotes the relevance scoring function. To ensure retrieval performance, we further establish a dynamic
threshold criteria: each retrieved bug-fixing pair must have a BM25 score greater than the length of the input
query (i.e., the given buggy method, buggy hunk, or commit message) with an added term corresponding to
the average length of C across all bug-fixing pairs in D. In other words, the top-1 output is retained only if

5 (�8 , 1) > ;4=(1)+
∑|D|

8=1 ;4= (�8 )
|D | . Specifically, PATCH selects up to three demonstrations (including paired buggy and

fixed methods) as the retrieved results from D, taking into account the potential for duplicates when evaluating
different buggy contexts, or excluding outputs that do not meet the threshold criteria. ChatGPTDeveloper is then
able to summarize the common bug-fixing patterns based on retrieved similar demonstrations , providing
insights into the root causes and resolutions of the given bug.

2.4 Patch Generation
Once the root cause of a bug has been identified, the developer embarks on the process of creating a patch to
resolve the discovered bug. Previous studies have employed LLMs to directly generate candidate patches based on
the provided buggy code. However, bug fixing is an intricate task that poses significant challenges in generating
the correct patches from scratch. In the context of PATCH, the responsibilities of the developer encompass two
main aspects. Firstly, the developer generates an initial candidate patch according to the bug report filed by
ChatGPTTester and the guidance obtained during the bug diagnosis stage. Secondly, the developer refines the
candidate patch by incorporating review feedback when the candidate patch does not meet the desired fixing
goal. This subsection exemplifies the process of initial patch generation.

As illustrated in Figure 7, the objective of ChatGPTDeveloper, as stated in the System Instruction, during
the initial patch generation stage is to patch the buggy hunk using the feedback information outlined in the
User-Defined Prompt. Existing LLM-based approaches have encountered challenges regarding the accuracy of
patch generation. In light of this, PATCH provides ChatGPTDeveloper with a guided process for bug reporting and
diagnosis. This enables ChatGPTDeveloper to generate an initial candidate patch by incorporating information

from the bug report , the code explanation , and the bug-fixing patterns as prompt. Subsequently, the

generated candidate patch undergoes further verification by the reviewer.

2.5 Patch Verification
Generating the correct patches in a single attempt presents a significant challenge for complex bugs. Therefore,
the review process for the generated candidate patches assumes considerable significance as a pivotal activity
within software peer review [67, 83]. When presented with a candidate patch generated by the developer, the
reviewer needs to assess its effectiveness in resolving the given bug. Algorithm 1 details the interaction process
between the developer and the reviewer. The inputs include two ChatGPT agents (i.e., ChatGPTDeveloper and
ChatGPTReviewer), the initial candidate patch ?init generated by ChatGPTDeveloper, the patch verification prompt
PROMPTPV, the iteration patch generation prompt PROMPTPGiter , and the hyper-parameter for the maximum
iteration number maxIterNum. The algorithm produces as output the final candidate patch ? , which has been
verified by ChatGPTReviewer. The algorithm begins by initializing the current iteration turn currentIterNum
(Line 1). Subsequently, ChatGPTReviewer generates the review feedback Creview for ?init using PROMPTPV (Line
2). If ChatGPTReviewer passes ?init (Line 3), the algorithm considers the bug resolved, and ?init is regarded as
the final output (Line 4). In cases where ChatGPTReviewer does not approve ?init, indicating the bug remains
unfixed, an interactive process is initiated between ChatGPTReviewer and ChatGPTDeveloper. The hyper-parameter
maxIterNum serves as a termination criterion, capping the maximum number of iterations allowed to generate
a candidate patch for fixing the bug (Line 6). During each iteration, currentIterNum is incremented (Line 7).
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Prompt Generation for Initial Patch Generation
System Instruction
You are an experienced software developer. Your goal is to output the fixed code in your [Response].
User-Defined Prompt
[Task Definition]
In the initial patch generation sub-task, you will receive one [Buggy Content]. Please generate a 
single-hunk patch to fix the bug in the [Buggy Hunk] according to the [Feedback Information].
[Buggy Content]
[Dependence Context] + [Buggy Method] + [Buggy Hunk]
[Feedback Information]
The root cause of the buggy hunk is [Bug Report]. The explanation of the buggy method is 
[Code Explanation]. Considering the following similar patterns: [Bug-Fixing Pattern].
[Response]

[Candidate Patch]
meta.setMd5sum(new String(md5));

[Bug Report]
The root cause of the buggy...

[Code Explanation]
1. This line retrieves the value 
of CHECKSUM_COLUMN...

[Bug-Fixing Pattern]
The bug-fixing patterns 
summarized in the...

ChatGPTDeveloper

Augmented Buggy Content & Feedback Information

[Class-Level Dependence Context]
import ai.subut.kurjun.metadata.common.DefaultMetadata;
[Repository-Level Dependence Context]
public void setMd5sum(String md5sum) {};

[Buggy Method]
private DefaultMetadata makeMetadata(ResultSet current) throws SQLException, DecoderException {
    String md5hex = current.getString(SqlStatements.CHECKSUM_COLUMN);
    byte[] md5 = Hex.decodeHex(md5hex.toCharArray());
    DefaultMetadata meta = new DefaultMetadata();
    meta.setMd5sum(md5);
    meta.setName(current.getString(SqlStatements.NAME_COLUMN));
    meta.setVersion(current.getString(SqlStatements.VERSION_COLUMN));
    meta.setSerialized(current.getString(SqlStatements.DATA_COLUMN));
    return meta;
}

[Buggy Hunk]
meta.setMd5sum(md5);

outputquery

Fig. 7. A Prompting Example of the Developer’s Behavior during the Initial Patch Generation Stage.

Algorithm 1: Interaction Process between ChatGPTDeveloper and ChatGPTReviewer.
Input: ChatGPTDeveloper (the developer ChatGPT agent);ChatGPTReviewer (the reviewer ChatGPT agent);

?init (the candidate patch generated by ChatGPTDeveloper during the initial patch generation stage);
PROMPTPV (the patch verification prompt); PROMPTPGiter (the iteration patch generation
prompt); maxIterNum (the maximum iteration number)

Output: ? (the candidate patch verified by ChatGPTReviewer)

1 currentIterNum← 0
2 Creview ← ChatGPTReviewer (PROMPTPV (?init))
3 if Creview is PASS then
4 ? ← ?init

5 else
6 while currentIterNum < maxIterNum do
7 currentIterNum← currentIterNum + 1
8 ?iter ← ChatGPTDeveloper (PROMPTPGiter (Creview))
9 Creview ← ChatGPTReviewer(PROMPTPV (?iter))

10 if Creview is PASS then
11 ? ← ?iter

12 break
13 end
14 end
15 return ?
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Prompt Generation for Patch Verification
System Instruction
You are an experienced software reviewer. Your goal is to output the review feedback in your [Response].
User-Defined Prompt
[Task Definition]
In the patch verification sub-task, you will receive one [Buggy Content] and its associated patch. Please assess 
the correctness of the given [Candidate Patch] based on whether it meets the [Desired Fixing Goal].
[Buggy Content & Patch]
[Dependence Context] + [Buggy Method] + [Buggy Hunk] + [Candidate Patch]
[Desired Fixing Goal]
The intention of the buggy method is [Method Summary]. The intent of the programmer is [Commit Message].
[Response]

[Review Feedback]
The generated patch is correct.

[Method Summary]
The functional intent of...

ChatGPTReviewer

query

Augmented Buggy Content & Feedback Information

[Class-Level Dependence Context]
import ai.subut.kurjun.metadata.common.DefaultMetadata;
[Repository-Level Dependence Context]
public void setMd5sum(String md5sum) {};

[Buggy Method]
private DefaultMetadata makeMetadata(ResultSet current) throws SQLException, DecoderException {
    String md5hex = current.getString(SqlStatements.CHECKSUM_COLUMN);
    byte[] md5 = Hex.decodeHex(md5hex.toCharArray());
    DefaultMetadata meta = new DefaultMetadata();
    meta.setMd5sum(md5);
    meta.setName(current.getString(SqlStatements.NAME_COLUMN));
    meta.setVersion(current.getString(SqlStatements.VERSION_COLUMN));
    meta.setSerialized(current.getString(SqlStatements.DATA_COLUMN));
    return meta;
}

[Commit Message]
Fixing different data type errors.

[Buggy Hunk]
meta.setMd5sum(md5);

[Candidate Patch]
meta.setMd5sum(new String(md5));

output

Fig. 8. A Prompting Example of the Reviewer’s Behavior during the Patch Verification Stage.

To generate an updated iteration candidate patch ?iter, ChatGPTDeveloper integrates PROMPTPGiter with Creview

together as input (Line 8). ChatGPTReviewer then interactively evaluates ?iter to assess its suitability as a correct
solution to the bug. This interactive process continues until ChatGPTReviewer determines ?iter to be correct (Lines
10–12) or when the maximum number of iterations maxIterNum is reached.

Figure 8 delineates the review process undertaken by ChatGPTReviewer. The objective of ChatGPTReviewer

during the patch verification stage is to evaluate the given [Buggy Content & Patch], determining its cor-
rectness based on the provided [Desired Fixing Goal]. The fixing goal encompasses two primary aspects: the
functionality requirement (i.e., the method summary inferred by ChatGPTDeveloper) and the programmer’s
intent as conveyed in the commit message . As depicted in Figure 8, the review feedback confirms that the

candidate patch satisfies both of the aforementioned goals, thereby deeming it correct.

3 EXPERIMENTAL SETUP

3.1 ResearchQuestions
To assess the effectiveness of PATCH, we aim at answering the following three research questions (RQs):

• RQ1: How does PATCH perform in bug fixing when compared to state-of-the-art LLMs? The
objective of this RQ is to evaluate the superior effectiveness of PATCH in comparison to state-of-the-art
LLM baselines within the context of bug fixing. To achieve this, we conduct a comprehensive comparison
of PATCH against 13 LLMs using an augmented bug-fixing benchmark.
• RQ2: How does each component impact the performance of PATCH? PATCH introduces two

essential mechanisms: the augmented buggy content and the behavior-simulation framework. The
proposed framework further comprises three agents: ChatGPTTester is responsible for bug reporting,
ChatGPTDeveloper handles bug diagnosis and patch generation, and ChatGPTReviewer is in charge of patch
verification. In this RQ, we aim to analyze the contributions of each designed component by conducting
the ablation study.
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Table 1. Statistics of the BFP Benchmark in Our Experiments.

# of Instances
Buggy Method Statistics Buggy Class Statistics

LoC Range CC Range Complexity LoC Range Method Count Range CC Range Complexity

Training Set 28226 [1, 85] [1, 56] 17.2% [5, 63808] [1, 2218] [1, 49] 11.7%
Testing Set 3112 [1, 57] [1, 19] 14.4% [5, 13765] [1, 449] [1, 27] 9.8%

• RQ3: What is the generalizability of PATCH to additional benchmarks and different LLMs? This
RQ first assesses the generalizability of PATCH by applying it to four common benchmarks in the field of
automated program repair (APR). Furthermore, we extend PATCH to five open-source LLMs that support
interactive dialogues to enhance evaluation diversity.

3.2 Benchmark
In this paper, we utilize the widely recognized BFP benchmark [81] as our original data source, encompassing a
substantial collection of paired bug-fixing instances extracted from real-world GitHub repositories. Each instance
within the BFP benchmark consists of both the buggy and the fixed Java methods. To achieve a comprehensive
understanding of the provided buggy method, we first extract additional contextual dependencies associated with
the buggy method as described in Section 2.1. Notably, we exclude instances that cannot be successfully parsed
by Spoon, as well as those exceeding 300 tokens in length (in consideration of the maximum token limits of the
LLMs). Furthermore, we collect bug-fixing commits from GitHub linked to instances within the BFP benchmark
and apply a three-stage filtering mechanism to ensure commit quality. First, we filter out commits shorter than 5
tokens, excluding low-informative messages such as “done” or “bug fixing”. The remaining commits undergo an
automated annotation process powered by the advanced LLM GPT-4 [24]. Specifically, we provide GPT-4 with
examples of irrelevant or low-quality commits to facilitate few-shot in-context learning, enabling it to accurately
label the commits as either good or bad, and to generate a confidence score for each annotation. Finally, we employ
random sampling [74] on the good commits with a confidence score greater than 0.90 for manual inspection.
In particular, the first author and three experienced master students manually reviewed 380 commit samples
(confidence level: 95%, margin of error: 5%). The inspection results show that GPT-4’s annotation accuracy exceeds
90%, with 36 commits removed due to the inconsistencies between human and GPT-4 annotations, thereby
demonstrating the effectiveness and reliability of the data annotations generated by GPT-4.

Consequently, each instance within the BFP benchmark is augmented with additional information (i.e., the
dependence context and the commit message). Next, we split the augmented BFP benchmark into training and
testing sets by maintaining a 9:1 ratio. To prevent any data leakage, instances originating from the same GitHub
repository are not allowed to appear in different sets (e.g., one in the training set and the other in the testing
set). As illustrated in the second column of Table 1, we collect 28226 bug-fixing instances in the training set and
3112 in the testing set. The LoC Range column specifies the range of lines of code (LoC) for both the buggy
method and its corresponding buggy class. The CC Range column represents the range of cyclomatic complexity
(CC) [50], while the Complexity column indicates the proportion of complex methods with a CC greater than 5
[94]. The Method Count Range shows the range of method counts within the corresponding buggy class file.
We evaluate the bug-fixing performance of PATCH and selected baselines on the testing set. Additionally, we
perform the pattern summarization process, as described in Section 2.3.2, by retrieving similar instances from
the training set. In real-world development scenarios, such a code corpus for retrieval can be constructed using
open-source code repositories or historical bug-fixing data collected from developers’ private projects to facilitate
the pattern summarization process.
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3.3 Baselines
This paper centers on addressing the bug-fixing task using LLMs. Therefore, we compare PATCH against 13
state-of-the-art LLM baselines as listed in Table 2. The selection criteria are as follows:
• Popularity. Initially, we consider the list of popular models hosted on the Hugging Face platform, which

is an open-source resource for hosting and deploying large models. From this repository, we select LLMs
pre-trained or fine-tuned on a large amount of code corpus and specifically engineered to address code-
related tasks. Furthermore, we include closed-source LLMs (i.e., the GPT family of models) due to their
demonstrated impressive performance across a wide range of tasks.
• Diversity. We select LLMs with varying sizes of parameters and from different organizations.
• Accessibility. The selected LLMs are publicly accessible either through checkpoints (e.g., InCoder) or

non-free APIs (e.g., GPT-4). Thus, closed-source models such as AlphaCode [40] are excluded from our
evaluation.

Table 2. Overview of the Selected LLM Baselines.

Model # of Parameters Organization Pre-Training / Fine-Tuning Code Corpus

CodeGPT [46] 124M Microsoft CodeSearchNet [26]
DeepSeek-Coder [23] 1.3B DeepSeek GitHub
CodeGen2 [55] 3.7B Salesforce Stack [32]
CodeGeeX2 [110] 6B THU Pile [18] & BigQuery & GitHub
InCoder [17] 6.7B Facebook StackOverFlow & GitHub & GitLab
Mistral [27] 7B Mistral_AI Hugging Face Repository
CodeLLaMA [69] 7B & 13B Meta BigQuery
StarCoder [39] 15B BigCode Stack [32]
GPT-NeoX [4] 20B EleutherAI Pile [18]
Codex [9] 175B OpenAI -
ChatGPT [59] - OpenAI -
GPT-4 [60] - OpenAI -

3.4 Metrics
This paper employs the following two evaluation metrics to compare the performance of PATCH with the LLM
baselines.
• Fix@k. This paper first utilizes the Fix@k metric [111] to evaluate the bug-fixing performance of LLMs

on the testing set. This metric measures the percentage of successfully resolved bugs within the entire
testing set when : candidate patches are generated for each given bug. In other words, given a Java
method with a single-hunk bug, each corresponding LLM is permitted to generate : candidate patches.
The bug is considered resolved if any of the LLM-generated patches exactly match the human-written
ground truth. For Fix@k, higher values indicate better performance. In our experiments, we evaluate
Fix@k with : set to 1, 3, and 5, since most programmers are usually willing to review as few patches as
possible in real-world development scenarios [57].
• Levenshtein Distance. The Levenshtein distance metric calculates the absolute token-based edit distance

between the LLM-generated candidate patch and the human-written ground truth, representing the
minimum number of operations required to transform the candidate patch into the ground truth. A lower
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Patch Generation Prompt for LLM Baselines
[Task Instruction]
You are an experienced software developer. In the patch generation task, you will receive 
one [Buggy Content]. Please generate a single-hunk patch to fix the [Buggy Hunk] within 
the [Buggy Method] with reference to the provided [Retrieved Similar Demonstrations].

[Buggy Content]
[Retrieved Similar Demonstrations] + [Buggy Method] + [Buggy Hunk]

[Response]

[Buggy Method]                    [Buggy Hunk]          

public int nlink() {                  return st_nlink.get();
    return st_nlink.get(); 
}

[Retrieved Similar Demonstrations]

Example 1: [Buggy Method] ...  [Fixed Method] ...

... ...

Fig. 9. A Prompting Example for the LLM Baselines.

Levenshtein distance signifies a closer correspondence between the candidate patch and the ground truth.
This metric serves as a complementary measure that provides valuable insights into the usefulness of
incorrect LLM-generated candidate patches for programmers.

3.5 Implementation
We implement the main logic of PATCH in Python by invoking ChatGPT through its API. Specifically, we employ
the gpt-3.5-turbo-0125 version of the ChatGPT family due to its enhanced performance and cost-efficiency.
Following the best-practice guidelines from Shieh et al. [72], we design prompts and manually examine several
alternative approaches with selected buggy code using the Web-version of ChatGPT. The response configurations
of each ChatGPT agent are detailed as follows:

• ChatGPTTester. The maximum length of the bug report generated during the bug reporting stage is
restricted to 200 tokens.
• ChatGPTDeveloper . The maximum length for the code explanation and the bug-fixing pattern gener-

ated during the bug diagnosis stage is limited to 500 tokens. During the patch generation stage, the
maximum length of the candidate patch is capped at 150 tokens.
• ChatGPTReviewer . The maximum length of the review feedback generated during the patch verifica-

tion stage is constrained to 200 tokens.
In our experiments, when : = 1, we utilize greedy decoding for each ChatGPT agent. Specifically, PATCH
produces the top-1 chat completion choice for each input query with a sampling temperature of 0. For : > 1, a
sampling temperature of 0.8 is used to generate multiple responses. We limit the maximum number of interaction
turns between ChatGPTReviewer and ChatGPTDeveloper to three, as recommended by Chen et al. [10]. Furthermore,
we conduct experiments under a zero-shot setting, where task examples are not provided, aiming to demonstrate
the superiority of PATCH.

4 RESULTS AND ANALYSIS

4.1 Answering RQ1
To answer this question, we conduct a comprehensive comparison of PATCH with 13 state-of-the-art baselines
on the augmented BFP benchmark. For each baseline, we either reuse the official checkpoint or access the
inference API for implementation. As illustrated in Figure 9, we prompt the LLM baselines by incorporating
both the buggy method and several task examples, following the approach established in prior research. To
ensure a fair comparison, we utilize the same bug-fixing demonstrations retrieved by PATCH during the pattern
summarization phase to conduct these few-shot setting experiments. Additionally, we employ the same sampling
hyper-parameters as PATCH.
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Table 3. Comparison of PATCH against the LLM Baselines.

Model # of Parameters
Evaluation Metric Result Paired t-test Result

Fix@1 (%) ↑ Fix@3 (%) ↑ Fix@5 (%) ↑ Levenshtein Distance ↓ T-statistic ?-value

CodeGPT 124M 2.76 5.46 6.65 73.69 53.90 < 0.001
DeepSeek-Coder 1.3B 8.42 11.25 14.14 48.34 316.67 < 0.001
CodeGen2 3.7B 4.31 7.23 10.15 70.13 469.32 < 0.001
CodeGeeX2 6B 10.93 15.30 19.41 40.18 28.52 < 0.001
InCoder 6.7B 5.24 8.03 11.60 64.20 117.10 < 0.001
Mistral 7B 9.38 14.11 16.68 43.45 45.72 < 0.001
CodeLLaMA 7B 9.45 14.46 17.96 43.35 28.98 < 0.001
CodeLLaMA 13B 9.80 14.62 17.45 41.20 39.15 < 0.001
StarCoder 15B 13.50 17.58 20.89 34.27 43.42 < 0.001
GPT-NeoX 20B 8.93 14.56 16.16 57.37 32.57 < 0.001
Codex 175B 11.05 - - 36.33 - -
ChatGPT - 14.62 18.99 22.27 33.28 43.21 < 0.001
GPT-4 - 19.96 24.42 26.00 26.07 32.08 < 0.001

PATCH - 33.97 (14.01 ↑) 37.08 (12.66 ↑) 39.81 (13.81 ↑) 21.44 (4.63 ↓)

4.1.1 Experimental Metric Evaluation. Table 3 presents the bug-fixing performance of different models in terms
of the Fix@k (: ∈ [1, 3, 5]) and Levenshtein Distance (when : = 1) metrics, with the best result for each metric
highlighted in bold. The numbers in red denote PATCH’s improvement percentage points compared to the best
baseline. Our experiments reveal the following three-fold key findings:

(1) PATCH demonstrates superior performance compared to all the baselines on the augmented
BFP benchmark. Specifically, PATCH outperforms the best baseline GPT-4 by 14.01 percentage points in
terms of Fix@1. These improvements underscore the effectiveness of PATCH in bug fixing, particularly
considering that Fix@1 is a stringent metric. As for the Levenshtein Distance metric, PATCH achieves
a score of 21.44 on the augmented BFP benchmark, showcasing an improvement of 4.63 percentage points
over GPT-4. We also perform a statistical comparison of performance in terms of Fix@k (: ∈ [1, 3, 5])
between PATCH and each baseline LLM using the paired t-test [13]. The paired t-test evaluates the
null hypothesis, which posits that the difference between PATCH and each baseline is not statistically
significant. If the reported ?-value is less than the significance level of 0.05, the null hypothesis is rejected,
indicating that the observed disparity between PATCH and each baseline is statistically significant and
not due to random chance. Additionally, we compute the T-statistic to measure the effect size; a larger
T-statistic indicates a more significant performance difference between PATCH and each baseline. The
paired t-test results in Table 3 show that PATCH surpasses all baselines in bug-fixing performance, with
the difference being statistically significant (?-value < 0.001).

(2) Simulating programmer behavior proves to be advantageous for bug fixing. Rather than altering
the parameters of ChatGPT, PATCH explicitly prompts ChatGPT to mimic the behavior of programmers
engaged in the bug management process. The substantial improvements observed over the base ChatGPT
model suggest that PATCH effectively enhances ChatGPT’s bug-fixing capabilities by endowing it with
collaborative problem-solving skills. Furthermore, aligning ChatGPT with the interactive decision-making
processes of programmers boosts its performance across various aspects, including the comprehension of
intent.

(3) Enhancing the bug-fixing performance of LLMs relies on two factors: increasing the number of
parameters and designing well-crafted prompts. Generally, an increase in parameters often leads to
improved performance, as demonstrated by StarCoder-15B surpassing CodeGeeX2-6B, while CodeLLaMA-
13B performs better than CodeLLaMA-7B. Notably, LLMs struggle to achieve satisfactory performance
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Table 4. Comparison of the Fixed Bug Types between PATCH and the LLM Baselines.

Model
Simple Delete Simple Insert Simple Replace Mixed

149 bugs 272 bugs 1157 bugs 1534 bugs
: = 1 : = 5 : = 1 : = 5 : = 1 : = 5 : = 1 : = 5

CodeGPT 15 (8.66%) 22 (14.77%) 5 (1.84%) 28 (10.29%) 36 (3.11%) 90 (7.78%) 30 (1.96%) 67 (4.37%)
DeepSeek-Coder 28 (18.79%) 42 (28.19%) 14 (5.15%) 51 (18.75%) 112 (9.68%) 156 (13.48%) 108 (7.04%) 191 (12.45%)
CodeGen2 21 (14.09%) 38 (25.50%) 9 (3.31%) 38 (13.97%) 46 (3.98%) 100 (8.64%) 58 (3.78%) 140 (9.13%)
CodeGeeX2 23 (15.44%) 50 (33.56%) 51 (18.75%) 61 (22.43%) 129 (11.15%) 226 (19.53%) 137 (8.93%) 267 (17.41%)
InCoder 21 (14.09%) 44 (29.53%) 14 (5.15%) 62 (22.79%) 59 (5.10%) 97 (8.38%) 69 (4.50%) 158 (10.30%)
Mistral 29 (19.46%) 43 (28.86%) 16 (5.88%) 33 (12.13%) 124 (10.72%) 222 (19.19%) 123 (8.02%) 221 (14.41%)
CodeLLaMA-7B 29 (19.46%) 49 (32.89%) 13 (4.78%) 26 (9.56%) 136 (11.75%) 239 (20.66%) 116 (7.56%) 245 (15.97%)
CodeLLaMA-13B 28 (18.79%) 46 (30.87%) 14 (5.15%) 26 (9.56%) 137 (11.84%) 229 (19.79%) 126 (8.21%) 242 (15.78%)
StarCoder 27 (18.12%) 55 (36.91%) 52 (19.12%) 62 (22.79%) 164 (14.17%) 252 (21.78%) 177 (11.54%) 281 (18.32%)
GPT-NeoX 28 (18.79%) 59 (39.60%) 12 (4.41%) 59 (21.69%) 127 (10.98%) 146 (12.62%) 111 (7.24%) 239 (15.58%)
Codex 19 (12.75%) - 6 (2.21%) - 175 (15.13%) - 144 (9.39%) -
ChatGPT 27 (18.12%) 49 (32.89%) 15 (5.51%) 59 (21.69%) 218 (18.84%) 290 (25.06%) 195 (12.71%) 295 (19.23%)
GPT-4 38 (25.50%) 48 (32.21%) 38 (13.97%) 42 (15.44%) 277 (23.94%) 370 (31.98%) 268 (17.47%) 349 (22.75%)

PATCH 60 (40.27%) 77 (51.68%) 96 (35.29%) 115 (42.28%) 448 (38.72%) 497 (42.96%) 453 (29.53%) 550 (35.85%)

CodeGPT DeepSeek-Coder CodeGen2 CodeGeeX2 InCoder Mistral CodeLLaMA-7B CodeLLaMA-13B StarCoder GPT-NeoX CodeX ChatGPT GPT-4 PATCH
CodeGPT 1 78% 59% 54% 79% 54% 70% 73% 71% 67% 46% 73% 75% 78%

DeepSeek-Coder 77% 6 38% 59% 46% 62% 68% 66% 69% 70% 42% 39% 51% 73%
CodeGen2 63% 74% 1 60% 73% 79% 78% 70% 68% 82% 31% 30% 40% 68%

CodeGeeX2 79% 45% 24% 25 28% 45% 48% 48% 74% 73% 33% 34% 46% 73%
InCoder 74% 74% 60% 58% 2 71% 77% 73% 68% 61% 34% 29% 44% 71%
Mistral 72% 56% 36% 53% 40% 5 64% 66% 63% 81% 41% 45% 57% 76%

CodeLLaMA-7B 84% 61% 35% 56% 43% 64% 3 66% 65% 67% 47% 41% 54% 73%
CodeLLaMA-13B 79% 57% 31% 54% 39% 63% 63% 4 64% 61% 46% 44% 57% 76%

StarCoder 76% 43% 22% 60% 26% 44% 45% 46% 27 41% 35% 36% 47% 72%
GPT-NeoX 41% 44% 43% 35% 47% 43% 35% 40% 37% 16 31% 45% 52% 68%

CodeX 13% 32% 12% 33% 16% 35% 40% 40% 42% 14% 26 54% 67% 76%
ChatGPT 18% 22% 9% 26% 11% 29% 27% 29% 33% 18% 41% 20 68% 84%

GPT-4 14% 22% 9% 25% 11% 27% 25% 28% 32% 16% 37% 50% 56 79%
PATCH 10% 18% 9% 24% 11% 21% 20% 22% 29% 14% 25% 36% 47% 283

Fig. 10. The Overlapping Rates and Unique Patch Numbers of the Evaluated Models.

due to their inability to comprehend how to solve complex problems. However, this limitation can be
effectively addressed by incorporating essential information into the query prompts. By adopting this
approach, PATCH significantly outperforms the LLM baselines. This finding validates our motivation to
decompose the bug-fixing task into subtasks using well-designed prompts, as it substantially enhances
the performance of LLMs in this context.

4.1.2 Bug Types Evaluation. We begin by utilizing the Gumtree algorithm [15] to compute the difference between
two ASTs generated by Spoon [65].We classify the bugs into four categories based on the necessary edit operations
to transform a bug hunk into its corrected version: Simple Delete, Simple Insert, Simple Replace, and Mixed.
For instance, Simple Delete indicates that a bug can be fixed by removing certain tokens from a specific position.
Table 4 presents the comparison results (when : = 1 and : = 5), with each row representing a model and the
corresponding number of correct patches generated for each bug type on the augmented BFP benchmark. The
best results are highlighted in bold. The statistical findings in Table 4 reveal that LLMs excel at fixing bugs that
require only deletion edit operations but encounter difficulties with more intricate ones. This observation is
reasonable since insert and replace edit operations demand that the model search for additional tokens to fix the
given bug. Overall, PATCH outperforms all baselines in resolving both simple and complex bugs.
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Table 5. Ablation Study for PATCH.

Model

Component

Fix@1 (%) ↑ Fix@3 (%) ↑ Fix@5 (%) ↑Augmented Buggy Content ChatGPTTester ChatGPTDeveloper ChatGPTReviewer

Dependence Context Commit Message Bug Report Code Explanation Bug-Fixing Pattern Review Feedback

ChatGPT

� � 14.62 18.99 22.27
� � 16.87 21.50 24.39
� � 18.86 24.33 27.28

� � � � 17.48 22.59 26.86
� � � � 17.26 22.46 26.09
� � � � 16.93 21.79 24.55
� � � � 17.89 23.01 27.37
� � � � 22.14 26.22 29.53
� � � � 20.31 25.16 28.92
� � � � 24.23 27.79 30.27
� � � � 33.97 37.08 39.81

GPT-4
� � 19.96 24.42 26.00
� � 22.85 27.47 30.01
� � 25.96 29.37 31.62

4.1.3 Overlapping Phenomenon Evaluation. As illustrated in Figure 10, each row represents the overlapping
ratio (when : = 1) of correct patches generated by one model with those generated by other models, while the
diagonal indicates the number of unique correct patches generated by each model on BFP. The color intensity of
each rectangle increases with the overlapping rate, providing a visual cue for easier interpretation. For example,
PATCH generates correct patches that overlap with 29% of those generated by StarCoder (row 14, column 9). The
results in Figure 10 indicate that models with superior performance tend to exhibit higher overlapping patching
rates with other models. The evaluation results in Table 3 show that that PATCH, GPT-4, and ChatGPT are the
top three models. The overlapping rates of other models with these three are notably higher, likely due to the
adoption of similar network architectures and inference paradigms among DL-based approaches. Furthermore,
PATCH uniquely fixes 283 bugs (row 14, column 14), a significantly higher number than other LLM baselines.

Answer to RQ1: In conclusion, PATCH demonstrates significant superiority over the LLM baselines across
the evaluation metrics, underscoring the effectiveness of PATCH in the bug-fixing task. Additionally, our
findings reveal that PATCH is capable of generating a higher number of unique and correct patches compared
to the LLM baselines.

4.2 Answering RQ2
To answer this question, we perform a series of ablation experiments to assess the impact of different components
within the PATCHdesign. To ensure the fairness of comparisons, wemaintained consistency in the implementation
settings, adhering to the parameters detailed in Section 3.5.

4.2.1 Ablation Study. Table 5 presents the evaluation results, where each row represents one ablation model.
The symbols � and � respectively indicate the addition and removal of the corresponding component. The best
Fix@k (: ∈ [1, 3, 5]) results are highlighted in bold. To demonstrate the contribution of each component to
bug-fixing performance, we start with evaluating the base model-ChatGPT-using only the buggy method as the
input prompt to generate candidate patches. Upon integrating the Dependence Context and Commit Message
into ChatGPT, we observe improvements of 2.25% and 4.24% in the Fix@1 metric, respectively, compared
to the base ChatGPT model. Further enhancements are observed when incorporating the Bug Report, Code
Explanation, and Bug-Fixing Pattern components, which lead to additional improvements of 2.86%, 2.64%,
and 2.31% in Fix@1, respectively, relative to the base ChatGPT model. Notably, the addition of the ChatGPTTester

component allows the ChatGPT agent to perform bug reporting, identify the root cause of the buggy code, and
generate candidate patches based on the information available in the bug report. This improvement underscores
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Augmented Buggy Content
[Class-Level Dependence Context]
private final List<String> possibleStates;
[Buggy Method]
public List<String> getpossibleStates() {    // Buggy Hunk
public Set<String> getpossibleStates() {     // Human-Written Patch
    return possibleStates;
}
[Commit Message]
Fixed bug allowing duplicate states to be added to possibleStates.

ChatGPT
ChatGPTT
ChatGPTTD
ChatGPTTDR

public ArrayList<String> getpossibleStates() {
public ArrayList<String> getpossibleStates() {
public List<String> getpossibleStates() {
public Set<String> getpossibleStates() {

:
:
:
:

Candidate Patch Generated by Each Ablation Model

－
＋

Fig. 11. An Example from the Augmented BFP Benchmark only Fixed by PATCH.

the significance of providing essential bug-related information in the bug-fixing process. The inclusion of the
ChatGPTDeveloper component further enables the ChatGPT agent to generate candidate patches informed by the
bug diagnosis stage, demonstrating the efficacy of the self-guided diagnosis process in enhancing bug-fixing
efficiency. Furthermore, the integration of the ChatGPTReviewer component equips ChatGPT with interactive
abilities to refine candidate patches based on Review Feedback, leading to continuous improvements in bug-
fixing performance, with an additional enhancement of 9.74% in Fix@1. This result emphasizes the importance
of interaction and collaboration during the resolution of complex software bugs. In conclusion, all components
are crucial for optimizing the bug-fixing performance of PATCH. In the subsequent set of experiments, we further
evaluate the impact of augmenting GPT-4, the most advanced LLM, with additional buggy content. Our results
indicate that incorporating the Dependence Context and Commit Message components enhances GPT-4’s bug-
fixing performance by 2.89% and 6.00%, respectively, in terms of the Fix@1 metric. This outcome indicates the
significant positive effect of incorporating Augmented Buggy Content, which is on par with the performance
observed in ChatGPT when utilizing the ChatGPTTester and ChatGPTDeveloper components. Additionally, this
result also highlights the critical role of the proposed stage-wise framework in enhancing bug-fixing performance.
Figure 11 depicts an example of bug-fixing from the augmented BFP benchmark. Among the different ablation
models (where T is short for ChatGPTTester, D is short for ChatGPTDeveloper and R is short for ChatGPTReviewer),
only PATCH (i.e., ChatGPTTDR) manages to successfully patch the bug. The provided commit message suggests
that the root cause of the bug lies in a lack of control over the internal list, thus necessitating a patch that
addresses the issue of duplicate states being added. As shown in Figure 11, it is evident that the ablation models
without the ChatGPTReviewer component produce incorrect patches that either do not include any changes to the
buggy hunk or fail to resolve the duplicate issue. However, with the guidance provided by the commit message
as the fixing goal during the patch verification stage, PATCH is able to generate a correct candidate patch that
matches the human-written ground truth.

4.2.2 The Impact of Different Commit Message Types. We further investigate the influence of commit message
quality on bug-fixing performance. Following the approach outlined in existing research [79], we categorize
commit messages into four types based on the presence of Why (i.e., justification for the commit change)
and What (i.e., summary of the commit change) information. Table 6 provides a comparative analysis of two
treatments: with and without the commit message (abbreviated as CM), across the four commit message types
(Why and What, No Why, No What, and Neither Why nor What) for ChatGPT and GPT-4. The comparison
examines the number of correct patches generated for each commit message type at : = 1, : = 3, and : = 5. Our
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Table 6. The Effect of Different Commit Message Types on Bug Fixing.

Model
Why and What No Why No What Neither Why nor What

1043 bugs 1541 bugs 314 bugs 214 bugs
: = 1 : = 3 : = 5 : = 1 : = 3 : = 5 : = 1 : = 3 : = 5 : = 1 : = 3 : = 5

ChatGPT 119 134 188 262 324 388 20 33 40 54 64 77
ChatGPT w/ CM 189 (+70) 246 (+112) 277 (+89) 316 (+54) 405 (+81) 449 (+61) 28 (+8) 41 (+8) 45 (+5) 54 (+0) 65 (+1) 78 (+1)

GPT-4 177 228 243 350 418 445 32 38 39 62 76 82
GPT-4 w/ CM 265 (+88) 292 (+64) 315 (+72) 428 (+78) 483 (+65) 521 (+76) 45 (+13) 55 (+17) 58 (+19) 70 (+8) 84 (+8) 90 (+8)

41.1%

43.4%

10.9%
4.6%

GPT-4 (k = 5)

41.6%

42.2%

11.0%

5.2%

GPT-4 (k = 3)

47.1%

41.7%

7.0%
4.3%

GPT-4 (k = 1)

53.0%40.9%

6.1%

0.0%

ChatGPT (k = 1)

55.4%

40.1%

4.0%

0.5%

ChatGPT (k = 3)

57.1%

39.1%

3.2%

0.6%

ChatGPT (k = 5)

Why and What No Why No What Neither Why nor What

Fig. 12. The Contribution of Different Commit Message Types to Improvements in Bug-Fixing Performance.

findings indicate that all four types have a non-negative effect on performance improvements, as they contribute
to generating more correct patches. Furthermore, Figure 12 illustrates the contributions of different commit
message types to bug-fixing performance improvements. We observe that informative commit message types
(Why and What, No Why, and No What) contribute significantly more to performance gains compared to the
non-informative type (Neither Why nor What). This result is expected, as Neither Why nor What type commit
messages lack the necessary context, preventing the LLMs from reasoning accurately to fix the bug. On average,
the three informative types account for over 95% of the total contributions. Notably, for commit messages that
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contain only high-level information (i.e., No What), the more advanced LLM GPT-4 achieves greater performance
improvements than ChatGPT, highlighting its superior reasoning capabilities. Since the No What type commit
messages lack specific details about the steps taken to fix the bug, it forces the LLMs to rely on the justification for
the commit change to infer how to resolve the bug, increasing the difficulty required for solving the bug-fixing
task.

4.2.3 The Impact of Interaction Turns. In order to assess the impact of the interaction between ChatGPTReviewer

and ChatGPTDeveloper, we control the number of interaction turns and illustrate the Fix@1 results in Figure 13.
When the number of interaction turns is set to zero, it signifies a complete absence of interaction between
ChatGPTReviewer and ChatGPTDeveloper. Consequently, the candidate patch generated by ChatGPTDeveloper re-
ceives no feedback message from ChatGPTReviewer, leading to an outcome identical to that of the ablation
model ChatGPTTD. It is noteworthy that the most significant improvement arises from the first interaction
turn. Specifically, a single interaction turn with the ChatGPTReviewer component leads to an approximately 4.4%
enhancement in terms of Fix@1 over the ChatGPTTD model. As the number of interaction turns continues to in-
crease beyond the initial round, the magnitude of improvements tends to diminish. Nonetheless, our observations
indicate a consistent enhancement, suggesting that additional interactions still contribute to the capability to
resolve more complex bugs. Figure 14 illustrates an exemplary interactive process between ChatGPTReviewer and
ChatGPTDeveloper during the stages of patch generation and patch verification. In this scenario, ChatGPTReviewer

determines that the candidate patch generated by ChatGPTDeveloper is incorrect based on the programmer’s
intent as summarized in the commit message . Consequently, ChatGPTDeveloper is required to generate a new
patch while taking into account the review feedback . As shown in Figure 14, PATCH successfully generates
the correct patch through this collaborative effort.
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Fig. 13. The Effect of Interaction Turns on Bug Fixing.

Answer to RQ2: To sum up, all components of PATCH significantly improve the fixing performance.
Regarding Fix@1, the addition of ChatGPTTester enhances ChatGPT by 2.86%. Furthermore, the introduction
of ChatGPTDeveloper leads to additional improvements of 6.75%, while the incorporation of ChatGPTReviewer

results in continuous enhancements of 9.74%.

4.3 Answering RQ3
To answer this question, we conduct an extensive evaluation of the generalizability of PATCH across four widely
used APR benchmarks and five popular open-source LLM baselines. This rigorous analysis offers a comprehensive
assessment of the effectiveness and robustness of PATCH.
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[Bug Report]
The root cause of the buggy hunk is that the condition in the if statement is incorrect. The 
method is trying to check if the commandIndex is greater than or equal to the size of the...

[Method Summary]
The functional intent of the buggy method is to retrieve the next command in the commandHistory stack.

Desired Fixing Goal

[Buggy Method]
private String getNextCommandHistory() {
    if (commandHistory.empty()) {
        return null;
    } else if (commandIndex >= commandHistory.size()) {
        return null;
    } else {
        commandIndex++;
        return commandHistory.get(commandIndex - 1);
    }
}

Augmented Buggy Content & Feedback Information

[Buggy Hunk]
} else if (commandIndex >= commandHistory.size()) {

[Commit Message]
Fixing the out-of-bound issue in the if stmt.

[Code Explanation]
1. This line checks if the commandHistory stack is empty.
2. If it is, the method returns null.
...
6. If neither of these conditions are met, the commandIndex is incremented by 1.
7. Returns the String at the index of `commandIndex - 1` in the `commandHistory` stack.

[Bug-Fixing Pattern]
The bug-fixing pattern involves: changing the comparison operator from ">=" to ">" to 
fix the off-by-one error in the arrowUpTrue() method; changing the initialization value 
of the loop variable 'i' from this.size() to 0 to fix the index out of bounds error in the add() 
method; changing the condition of the if statement from "row.size() >= 1" to 
"!row.isEmpty()" to fix the null pointer exception in the processValueRange() method.

ChatGPTDeveloper

[Candidate Patch]
} else if (commandIndex > commandHistory.size() - 1) {

[Review Feedback]
The generated patch is incorrect. This patch will still result 
in an out of bounds exception. The correct fix is to change 
">=" to ">" to avoid accessing an index that is out of bounds.

ChatGPTReviewer

ChatGPTDeveloper

[Review Feedback]
The generated patch is correct.

ChatGPTReviewer

[Class-Level Dependence Context]
private Stack<> commandHistory = new Stack<>();
private int commandIndex = 0;

[Candidate Patch]
} else if (commandIndex > commandHistory.size()) {

Fig. 14. An Example of the Interactive Process between ChatGPTReviewer and ChatGPTDeveloper.

4.3.1 Generalizability Evaluation on APR Benchmarks. We select single-hunk bugs from four additional APR
benchmarks for performance evaluation: Bugs.jar [70] (1000 bugs), Bears [48] (119 bugs), Defects4J [31] (313 bugs),
and QuixBugs [42] (37 bugs). Specifically, we compare PATCH to 17 APR baselines, which include template-based,
neural-based, pre-trained code language model-based, and LLM-based approaches. For template-based APR,
we use the state-of-the-art approach TBar [44] with perfect fault localization. For neural-based APR, we select
seven recently published approaches: CoCoNut [47], SeqenceR [11], Recoder [114], CURE [30], RewardRepair
[98], SelfAPR [96], and KNOD [29]. We further include four pre-trained code language models: CodeBERT [16],
GraphCodeBERT [22], CodeT5 [84], and UniXcoder [21]. Given that the BFP benchmark lacks test suites, we
evaluate PATCH by comparing it to five recent LLM-based APR approaches in this RQ: AlphaRepair [90], Repilot
[87], ChatRepair [91], ThinkRepair [100], and RepairAgent [5]. These LLM-based approaches are evaluated on the
Defects4J and QuixBugs benchmarks, both of which include test suites.

Experimental Settings. For Bugs.jar and Bears, we use the exact match metric to evaluate the correctness
of each generated candidate patch. This metric is preferable for these benchmarks due to their lack of test
suites, which helps avoid human bias and minimizes the manual effort required for patch validation [97]. In
these experiments, PATCH generates the top-1 candidate patch for each bug, whereas the selected baselines
typically generate a larger number of candidates (more than 100), as demonstrated in related studies [111, 113].
This paper reports the number of exact match patches within the top-10 candidates generated by each baseline
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Table 7. Comparison of PATCH on Four APR Benchmarks against 17 Baselines.

Model

# of Exact Match Patches # of Correct Patches

Bugs.jar Bears
Time / # Patch

Defects4J QuixBugs

1000 bugs 119 bugs 313 bugs 37 bugs

TBar - - 3 Hour 63 -

CoCoNut 66 16 1000 47 13
SeqenceR 99 14 300 41 15
Recoder 61 1 5 Hour 60 17
CURE - - 10000 59 25
RewardRepair 103 8 200 72 20
SelfAPR - - - 86 -
KNOD - - 1000 102 25

CodeBERT 111 12 - - -
GraphCodeBERT 115 12 - - -
CodeT5 150 16 - - -
UniXcoder 164 22 - - -

AlphaRepair - - ≤ 5000 92 28
Repilot - - ≤ 5000 116 -
ChatRepair - - ≤ 200 142 36
ThinkRepair - - ≤ 125 155 36
RepairAgent - - Avg. of 117 124 -

PATCH 180 (9.76% ↑) 28 (27.27% ↑) ≤ 100 169 (9.03% ↑) 35 (2.86% ↓)

[11, 16, 21, 22, 47, 84, 98, 114], consistent with recent findings [57], which suggest that most developers are
willing to review no more than 10 patches. For Defects4J and QuixBugs, we adopt the widely-used test-passing
metric for patch assessment, following previous studies [5, 11, 29, 30, 47, 87, 90, 91, 96, 98, 100, 114]. A patch
is considered plausible if it passes all test cases. All plausible patches are subsequently manually reviewed by
comparing them to the developer-written ground truth. A patch is deemed correct if it is either 1) identical to the
developer-written patch or 2) semantically equivalent to the developer-written patch. In our experiments, PATCH
samples a small-scale set of candidate patches (at most 100 fixing attempts), fewer than those generated by all
compared baselines, with a sampling temperature of 1 to ensure response diversity. This paper reports the number
of correct patches generated by PATCH within these 100 attempts. In evaluating the results of corresponding
baselines, we carefully compare the bug IDs correctly reported in the original papers with the set of single-hunk
bugs selected from the Defects4J and QuixBugs benchmarks utilized in this paper.

Evaluation Results. Table 7 illustrates the number of bugs successfully fixed by PATCH and each baseline
across different benchmarks in the context of fixing sing-hunk bugs. The Time / # Patch column indicates the
maximum time allowed for fixing a bug or the maximum number of fixing attempts permitted for a model to
generate before a plausible patch is obtained. A “-” indicates that no results have been reported in the corresponding
papers. The best performance for each benchmark is highlighted in bold. As observed, PATCH demonstrates a
substantial performance advantage over the baseline approaches across three benchmarks (except QuixBugs).
Specifically, PATCH surpasses the best baseline by 9.76% in the Bugs.jar benchmark (compared to UniXcoder),
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Fig. 15. The Number of Correct Patches Generated by Each Baseline on Bugs.jar under Different Candidate Numbers.

27.27% in the Bears benchmark (compared to UniXcoder), and 9.03% in the Defects4J benchmark (compared
to ThinkRepair). For the QuixBugs benchmark, the two LLM-based APR approaches, namely ChatRepair and
ThinkRepair, achieve superior performance, surpassing PATCH by 2.86%. This difference in performance may be
attributed to two primary factors: first, these approaches leverage error message feedback obtained from the
validation process using test suites; second, they sample a significantly larger number of candidate patches (over
100) for fixing a corresponding bug compared to PATCH. Consequently, the number of bugs fixed by PATCH on
the QuixBugs benchmark is lower than that of ChatRepair and ThinkRepair.

Impact of the Candidate Number. We investigate the number of correct patches generated by each baseline
on the Bugs.jar benchmark under different candidate numbers. As depicted in Figure 15, a large candidate
set clearly increases the likelihood of containing the exact match patch. Notably, all baselines demonstrated
improved bug-fixing performance with the increasing number of candidates. Nevertheless, it is noteworthy that
PATCH consistently outperforms the baseline approaches when applied to greedy decoding (i.e., generating top-1
candidate patch for each bug).

Case Study on Defects4J. We present a Venn diagram (shown in Figure 16(a)) to further illustrate the
bug-fixing performance across different approaches on Defects4J. For clarity, we highlight the top three best-
performing baselines (i.e., ThinkRepair, ChatRepair, and RepairAgent) based on the number of correctly fixed
bugs, and group all distinct correctly fixed bugs by the remaining baselines into an “Other” category for easier
comparison. Two observations can be drawn from Figure 16(a): ¬ Individual approaches exhibit varying bug-
fixing capabilities, with each being able to fix some specific bugs that others cannot. This suggests a degree of
complementary performance among the approaches. ­ Overall, PATCH generates the highest number of unique
bug fixes (i.e., 36) that other baselines are unable to resolve. Figure 16(b) showcases three examples generated
by PATCH that, while not exact matches, are semantically equivalent to the developer-written ground truth.
For instance, in Math-62, the developer uses “0.5 ∗ (<0G −<8=)” for the calculation, while PATCH employs
the equivalent operation, i.e., “(<0G −<8=)/2.0”. Additionally, we provide a bug (Jsoup-83) from Defects4J,
depicted in Figure 16(c), that is uniquely fixed by PATCH. Specifically, we use the required edit operation (i.e.,
insert) to fix the bug as the commit message for prompting PATCH. It is reasonable to provide only the high-
level description of the bug type without detailing the resolution process. As observed, PATCH benefits from
the feedback information within the bug report and bug-fixing patterns . PATCH correctly introduces the
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[Bug Report]
The root cause of the buggy method is that the condition in the if statement 
is not checking for the '<' character, which is necessary for consuming a 
complete tag. This can cause the method to return an incomplete tag name.

[Method Summary]
The method’s intent is to reads characters from a buffer and extracts a tag name by consuming characters until it encounters specific delimiters.

Desired Fixing Goal

[Buggy Method]
String consumeTagName() {
    bufferUp();
    final int start = bufPos;
    final int remaining = bufLength;
    final char[] val = charBuf;
    while (bufPos < remaining) {
        final char c = val[bufPos];
        if ((((((((c == '\t') || (c == '\n')) || (c == '\r')) || (c == '\f')) || (c == ' ')) || (c == '/')) || (c == '>')) || 

(c == TokeniserState.nullChar))
            break;
        bufPos++;
    } 
    return bufPos > start ? cacheString(charBuf, stringCache, start, bufPos - start) : "";
}

Augmented Buggy Content & Feedback Information

[Buggy Hunk]
if ((((((((c == '\t') || (c == '\n')) || (c == '\r')) || (c == '\f')) || (c == ' ')) || (c == '/')) || (c == '>')) ||
             (c == TokeniserState.nullChar))

[Code Explanation]
1. The method returns a String containing the tag name.
2. This function likely prepares the buffer or adjusts some internal state 
like bufPos.
3. start stores the position where tag consumption begins. This will be used 
later to calculate the length of the tag name.
...
8. This long chain checks if the character c is a delimiter.
9. If c matches any delimiter, the loop breaks.
10. The buffer position advances by one after each character is checked. 
Ensure that bufPos doesn't exceed bufLength.
11. If bufPos > start, cacheString() is called to return the substring from 
charBuf. If bufPos == start, an empty string is returned.

[Bug-Fixing Pattern]
The bug-fixing patterns involve adding missing characters or conditions to 
conditional statements to handle edge cases. In the first demonstration, the 
character '\' was missing, which caused the program to not handle escape 
characters properly. In the second demonstration, the characters '"' and '>' 
were missing, which caused the program to not handle attribute properly. 

ChatGPTDeveloper

[Candidate Patch]
if ((((((((c == '\t') || (c == '\n')) || (c == '\r')) || (c == '\f')) || (c == ' ')) || (c == '/')) || (c == '>')) ||
             (c == '<') || (c == TokeniserState.nullChar)) [Review Feedback]

The generated patch is correct.

ChatGPTReviewer

[Class-Level Dependence Context]
private final char[] charBuf;
private int bufLength;
private int bufPos;
private final String[] stringCache = new String[512];
void bufferUp() {}
String cacheString(final char() charBuf, final String() stringCache, final int start, final int count) {}

Buggy Hunk
Ground Truth

PATCH

return optimize(f, goal, min, max, 0);
return optimize(f, goal, min, max, min + 0.5 * (max - min));
return optimize(f, goal, min, max, min + (max - min) / 2.0);

:
:
:

Bug ID: Math-62

Buggy Hunk
Ground Truth

PATCH

new Range(0.0, constraint.getWidth() - w[2]),
new Range(0.0, Math.max(constraint.getWidth() - w[2], 0.0)),
new Range(0.0, Math.max(0.0, constraint.getWidth() - w[2])),

:
:
:

Bug ID: Chart-13

Buggy Hunk
Ground Truth

PATCH

return multiply(100).doubleValue();
return 100 * doubleValue();
return (doubleValue() * 100);

:
:
:

Bug ID: Math-62

PATCH

ThinkRepair

ChatRepair

RepairAgentOther

(a) Bug-Fixing Venn Diagram on Defects4J

(b) Semantically Equivalent Examples Generated by PATCH (c) Unique Bug Fixed by PATCH on Defects4J [Bug ID: Jsoup-83]

[Commit Message]
Require the ''insert'' operation.

Fig. 16. Examples of the Bug-Fixing Venn Diagram, Equivalent Patches, and a Uniquely Fixed Bug by PATCH on Defects4J.

Table 8. Generalizability of PATCH on Different LLMs.

Model Fix@1 (%) ↑ Simple Delete Simple Insert Simple Replace Mixed

DeepSeek-Coder-1.3B 8.42 28 14 112 108
DeepSeek-Coder-1.3B w/ PATCH 9.19 (9.14% ↑) 29 (+1) 17 (+3) 120 (+8) 120 (+12)

CodeGeeX2-6B 10.93 23 51 129 137
CodeGeeX2-6B w/ PATCH 13.95 (27.63% ↑) 25 (+2) 57 (+6) 192 (+63) 160 (+23)

Mistral-7B 9.38 29 16 124 123
Mistral-7B w/ PATCH 15.68 (67.16% ↑) 39 (+10) 28 (+12) 244 (+120) 177 (+54)

CodeLLaMA-7B 9.45 29 13 136 116
CodeLLaMA-7B w/ PATCH 15.87 (67.94% ↑) 35 (+6) 25 (+12) 249 (+113) 185 (+69)

CodeLLaMA-13B 9.80 28 14 137 126
CodeLLaMA-13B w/ PATCH 18.83 (92.14% ↑) 38 (+10) 34 (+20) 287 (+150) 227 (+101)

necessary condition (i.e., “<”) in the if statement to handle edge cases, ensuring the validity of consuming a
complete tag. In this case, both the root cause identified by ChatGPTTester and the patterns derived from the
retrieved similar demonstrations, as summarized by ChatGPTDeveloper, contribute to the successful resolution of
Jsoup-83, highlighting the collaborative capabilities of PATCH.

4.3.2 Generalizability Evaluation on Open-Source LLMs. We further employ PATCH to five open-source LLMs,
including DeepSeek-Coder-1.3B, CodeGeeX2-6B, Mistral-7B, CodeLLaMA-7B, and CodeLLaMA-13B, all of which
support interactive dialogues. Specifically, we conduct ablation experiments on each model individually to
investigate the impact of interactively querying the corresponding LLM with devised prompts as specified in
PATCH. To ensure the comparison fairness, the parameter configurations align with those described in Section 3.5.
Table 8 presents the comparison results using the Fix@1 metric, alongside the number of correct patches
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generated for each bug type. Each model’s results are depicted in two lines: the first line shows the results when
the corresponding LLM directly utilizes the buggy code and a few bug-fixing demonstrations as the input prompt
to resolve the given bug, and the second line shows the results when integrated with PATCH. From Table 8, we
derive several key insights. ¬ Integrating PATCH as a complementary plug-in enhances the bug-fixing
performance across all LLMs. The observed performance improvements range from 9.14% to 92.14%. ­ The
performance gains exhibit a marked increase with the number of parameters exceeding 7B. For instance,
the performance gain observed with the DeepSeek-Coder-1.3B model is substantially smaller than that of the
CodeLLaMA-13B model. ® The number of correct patches generated using PATCH is consistently higher
across all types of bugs, particularly for complex bug types such as Simple Replace and Mixed. In summary,
PATCH effectively harnesses the latent intelligence of the LLMs in an interactive and collaborative manner,
thereby improving their performance in the bug-fixing task.

Answer to RQ3: Since PATCH does not rely on fine-tuning with specific bug-fixing datasets, it demonstrates
a lower susceptibility to generalizability issues. Consequently, PATCH outperforms traditional approaches
across various APR benchmarks. Looking ahead, PATCH holds the potential to be seamlessly integrated
with additional LLMs in a plug-and-play manner.

5 DISCUSSION

5.1 Integration with Fine-Tuned LLMs
We conduct a preliminary experiment by replacing the ChatGPTDeveloper component in the patch generation
stage with the fine-tuned LLM RepairLLaMA [73] for APR, using the Defects4J benchmark. Figure 17 illustrates
the intersection of correct bug fixes between PATCH and the variant model PATCH RepairLLaMA. The experimental
results indicates that PATCH, using vanilla ChatGPT, outperforms the variant using the fine-tuned LLaMA model.
The performance decline can be attributed to two possible factors: 1) LLaMA has fewer parameters compared
to ChatGPT, and 2) the input length for RepairLLaMA is constrained to 1024 tokens, which may cause certain
bug examples in Defects4J, specifically those with longer buggy contexts and feedback information, to exceed
this limit. Consequently, the absence of contextual information may result from the utilization of truncation
strategies. Nevertheless, PATCH RepairLLaMA is still able to fix 30 bugs that PATCH could not address. Exploring
more effective ways to integrate fine-tuned LLMs into PATCH will also remain as our future work.

PATCH PATCHRepairLLaMA91 78 30

Fig. 17. Bug-fixing Venn Diagram between PATCH and PATCH RepairLLaMA on Defects4J.
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5.2 Multi-Hunk Bug-Fixing Scenario
Figure 18 presents an example of fixing the multi-hunk bug Closure-128 from Defects4J using PATCH. Fig-
ure 18(a)-(e) illustrate the adapted prompts for the single-function multi-hunk fixing scenario at different bug-
fixing stages. In the adapted framework, we modify the code representation of the buggy method by enclosing

each buggy hunk with specific identifiers (i.e., “[Buggy_Hunk_n_Begin]” and “[Buggy_Hunk_n_End]”).
Accordingly, PATCH generates the complete, fixed method as a candidate patch. As shown in Figure 18(d), PATCH
successfully fixes Closure-128 in the initial patch generation stage, producing a patch is semantically equivalent
to the developer-written one. This is achieved through leveraging feedback information from earlier stages.
Specifically, ChatGPTTester identifies the root causes of the two buggy hunks : Buggy_Hunk_1 is caused by
missing validation before string operations, and Buggy_Hunk_2 results from incorrect logic handling leading
zeros for non-zero strings. Subsequently, ChatGPTDeveloper retrieves a similar bug-fixing example involving the
patten of changing conditions or logic for correct behavior. In the patch generation step, PATCH addresses the first
buggy hunk by adding validation for null or empty string, and fixes the second buggy hunk by adjusting the
logic for handling leading zeros. Overall, PATCH can be adapted to multi-hunk bug-fixing scenarios by adjusting
the content of corresponding prompts to accommodate the specific structure of these bugs.

Augmented Buggy Content

[Buggy Method with Multiple Buggy Hunks]
static boolean isSimpleNumber(String s) {
    int len = s.length();
    "[Buggy_Hunk_1_Begin]" "[Buggy_Hunk_1_End]"
    for (int index = 0; index < len; index++) {
        char c = s.charAt(index);
        if (c < '0' || c > '9') {
            return false;
        }
    }
    "[Buggy_Hunk_2_Begin]" return len > 0 && s.charAt(0) != '0'; "[Buggy_Hunk_2_End]"
}

[Commit Message]
The "<Buggy_Hunk_1>" requires the "add" operation.
The "<Buggy_Hunk_2>" requires the "modify" operation.

(a) Adapted Prompt Generation for Bug Reporting
System Instruction
You are an experienced software tester. Your goal is to output the bug report in your [Response].
User-Defined Prompt
[Task Definition]
In the bug reporting sub-task, you will receive one [Buggy Content]. Please report the root cause 
of given buggy hunks (surrounded by "[Buggy_Hunk_n_Begin]" and "[Buggy_Hunk_n_End]")  
according to the guidance information from [Commit Message].
[Buggy Content]
[Buggy Method with Multiple Buggy Hunks] + [Commit Message]
[Response]

query output

[Bug Report]
[Buggy_Hunk_1] Based on the context of the 
method, which checks if a string s represents a 
valid number, a likely necessary edit here would 
be to add an initial validation or check for null...
[Buggy_Hunk_2] The code in this buggy hunk 
appears to be the part that checks if the number 
is "simple," meaning it doesn't begin with a zero 
unless it's a single-digit zero...
Thus, the root causes are: (1) missing validation 
before string operations, and (2) incorrect logic 
handling leading zeros for non-zero strings.

(b) Adapted Prompt Generation for Code Explanation
System Instruction
You are an experienced software developer. Your goal is to explain the code in your [Response].
User-Defined Prompt
[Task Definition]
In the code explanation sub-task, you will receive one [Buggy Content] (buggy method without 
the locations). Please summarize the functional intent of [Buggy Method] first, and then explain 
the [Buggy Method] line-by-line with rubber duck debugging technique.
[Buggy Content]
[Buggy Method]
[Response]

(c) Adapted Prompt Generation for Pattern Summarization
System Instruction
You are an experienced software developer. Your goal is to output the fixing pattern in your [Response].
User-Defined Prompt
[Task Definition]
In the pattern summarization sub-task, you will receive [Bug-Fixing Pairs] similar to the given bug. 
Please summarize the common bug-fixing patterns according to the [Retrieved Similar Demonstrations].
[Bug-Fixing Pairs]
[Retrieved Similar Demonstrations]
[Response]

[Method Summary]
The goal of the isSimpleNumber method is to 
check whether a given string represents a simple 
number, which is defined here as a string of 
digits that does not start with the character '0'.
[Code Explanation]
1. This line calculates the length of the string s...
2. This starts a for loop that iterates...
3. Inside loop, this line retrieves the character...
...
7. After the loop has finished, this line returns 
true only if the length of the string is greater...

query output

query output

[Bug-Fixing Pattern]
The fixing patterns summarized in the 
retrieved examples involve: 
(1) Changing conditions or logic for 
correct behavior;
(2) Fixing mathematical operations to 
ensure they perform the intended 
transformation; 
(3) Adjusting type conversions to handle 
precision and data type correctness...

ChatGPTTester

ChatGPTDeveloper

ChatGPTDeveloper

(d) Adapted Prompt Generation for Initial Patch Generation
System Instruction
You are an experienced software developer. Your goal is to output the patch in your [Response].
User-Defined Prompt
[Task Definition]
In the initial patch generation sub-task, you will receive one [Buggy Content]. Please generate a 
patch to fix the multi-hunk bug in the [Buggy Method] according to the [Feedback Information].
[Buggy Content]
[Buggy Method with Multiple Buggy Hunks]
[Feedback Information]
The root causes of the multiple buggy hunks are [Bug Repor t]. The code explanation of the buggy 
method is [Code Explanation]. Considering the following similar patterns: [Bug-Fixing Pattern].
[Response]

[Retrieved Similar Demonstrations]
Example 1: [Buggy Method] ... [Fixed Method] ...
Example 2: [Buggy Method] ... [Fixed Method] ...
Example 3: [Buggy Method] ... [Fixed Method] ...

ChatGPTDeveloper

query

output
[Candidate Patch]
static boolean isSimpleNumber(String s) {
    if (s == null || s.isEmpty()) {
        return false;
    }
    int len = s.length();
    // if (len == 0) {
    //     return false;
    // }
    for (int index = 0; index < len; index++) {
        char c = s.charAt(index);
        if (c < '0' || c > '9') {
            return false;
        }
    }
    return len > 0 && (s.charAt(0) != '0' || len == 1);
    // return len == 1 || s.charAt(0) != '0';
}

(e) Adapted Prompt Generation for Patch Verification
System Instruction
You are an experienced software reviewer. Your goal is to output the feedback in your [Response].
User-Defined Prompt
[Task Definition]
In the patch verification sub-task, you will receive one [Buggy Content] and its associated [Patch]. 
Please assess its correctness based on whether it meets the [Desired Fixing Goal].
[Buggy Content & Patch]
[Buggy Method with Multiple Buggy Hunks] + [Candidate Patch]
[Desired Fixing Goal]
The method’s intention is [Method Summary]. The required edit operation is [Commit Message].
[Response]

ChatGPTReviewer

query

[Review Feedback]
The generated patch is correct.

output

Developer-Written
Ground Truth

Fig. 18. An Example of Adaptation Prompts Used by PATCH for Fixing the Multi-Hunk Bug Closure-128 from Defects4J.

5.3 Threats to Validity
In this subsection, we outline the main threats to the validity of PATCH, as detailed below:
• External threat: The primary threats to external validity in this paper pertain to the quality of the

selected experimental subjects and the use of the commit message. The extent to which the improvements
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achieved by PATCH are applicable to other bug-fixing benchmarks remains uncertain. To mitigate this
concern, we have utilized the mainstream benchmark BFP, consistent with prior studies [78, 81, 84, 111],
and supplemented the evaluation with four additional APR benchmarks to enhance the diversity of
the evaluation. Furthermore, programmers typically write commit messages after fixing buggy code. In
this paper, we assumed that programmers write these messages before bug fixing, potentially limiting
PATCH’s real-world applicability. Nevertheless, we view PATCH as a proof-of-concept. The empirical
results indicate that utilizing commit messages as input can aid LLMs in comprehending programmers’
reasoning processes. These messages offer valuable insights into the programmer’s intent during the fix,
thereby empowering LLMs with guided context. In addition, the retrieved bug-fixing pairs during the
pattern summarization stage are crucial components of PATCH. Intuitively, when the retrieved code is
less similar to the given bug, the performance of PATCH may degrade. We apply a dynamic threshold
(described in Section 2.3.2) to ensure the quality of the retrieval. Empirical evidence also suggests that
code reuse can reach up to 80% in real-world projects [54]. Therefore, we believe that retrieving relevant
examples for summarizing bug-fixing patterns is highly feasible in practical development scenarios.
• Internal threat: LLMs exhibit sensitivity to prompts and hyper-parameters, especially concerning

the number of task examples and natural language instructions, which can significantly affect their
performance. To minimize this variability, we employ consistent prompts and hyper-parameters for
PATCH and the LLM baselines. We refrain from experimental tuning of the prompt design and hyper-
parameters, opting instead for empirical settings. As a result, we recognize that there is potential for
further performance improvements through additional tuning. Another potential threat involves the
possibility that the BFP benchmark, comprising Java projects hosted on GitHub between 2011 and 2017,
may have been included in the training data of ChatGPT, raising concerns about the data leakage issue.
Since ChatGPT is a closed-source model, the exact composition of its training data remains unknown.
Despite this limitation, PATCH exhibits a significant improvement in bug-fixing performance compared
to the base ChatGPT model, which employs the same underlying architecture. This enhancement suggests
that the superior results achieved by PATCH are not merely attributable to the model’s memorization
of its training data. Additionally, the equivalent patch examples shown in Figure 16(b) and Figure 18(d)
further supports our argument, as the Defects4J benchmark may be included in the training data of the
GPT-series models [36]. Furthermore, while occasional inaccuracies arise, LLMs effectively capture the
nature of bugs and provide clear, coherent code explanations. To reduce the likelihood of generating
incorrect patches, we initially input commit messages at the bug reporting stage to assist ChatGPT in
understanding the root cause of the given bug. Subsequently, we introduce the patch verification stage
for further quality refinement.
• Construct threat: This paper uses Fix@1 to assess the correctness of the generated candidate patches.

Although this metric does not fully capture human judgment, it offers a strict and objective measure,
facilitating rapid and quantitative evaluation of the model’s performance. For the evaluation of APR
benchmarks with test suites in Section 4.3.1, we adopt the widely-used test-passing metric to ensure a
fair comparison. Future work will include additional human evaluations to further validate the models.
In addition, PATCH specifically targets the resolution of single-hunk Java bugs utilizing ChatGPT. It is
essential to note, however, that the components designed for PATCH can be effectively applied to various
programming languages, integrated with multiple LLMs, and utilized in a wider range of bug-fixing
scenarios. In Section 5.2, we present a case study evaluating PATCH in fixing single-function multi-hunk
bugs through prompt adaptation. In future work, we aim to expand the evaluation scope of bug fixing to
comprehensively assess the generalizability of PATCH.
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6 RELATED WORK

6.1 Automatic Bug Fixing
Over the last decade, automatic bug fixing has emerged as a promising research topic, garnering significant
attention from both the SE and AI communities. Traditional approaches can be broadly divided into two categories:
search-based [19, 20, 33, 35, 44, 71] and semantics-based [1, 8, 34, 52, 93]. Search-based approaches typically rely
on predefined bug-fixing patterns mined from historical open-source software repositories to generate patches,
whereas semantics-based approaches generate patches by solving repair constraints derived from test suite
specifications.

With the rapid advancement of DL techniques, there has been an increasing focus on neural-based approaches
[104, 112], which have shown remarkable potential in enhancing bug-fixing performance. Unlike traditional
bug-fixing approaches, learning-based techniques can automatically capture semantic relationships between
parallel bug-fixing pairs, enabling the generation of more effective and context-aware patch solutions. However,
candidate patches generated by pre-trained models are typically not evaluated against a test suite or subjected to
other automated verification strategies. Consequently, these patches may encounter issues related to compilability.
In contrast to existing learning-based studies that typically use only static source code as input, SelfAPR [96]
extracts test execution diagnostics and encodes them into the input representation, guiding neural models in
fixing specific bugs. Furthermore, while most existing approaches are designed to fix bugs at a single location,
several multi-hunk bug-fixing methods have been proposed, utilizing either a divide-and-conquer strategy [41]
or an iterative fixing paradigm [99].

Recently, researchers have explored the feasibility of employing LLMs for automatic bug fixing. LLMs have
demonstrated the capability to directly generate correct patches based on the surrounding context, obviating the
necessity for fine-tuning. Despite the unprecedented outcomes achieved by LLM-based approaches [28, 66, 75, 89],
these techniques primarily focus on the buggy code and treat the bug fixing process as a single-stage task,
neglecting the interactive and collaborative nature inherent in bug resolution. Nevertheless, recent advancements
have shifted towards multi-step approaches. For example, ChatRepair [91] employs a conversational-driven
approach, iteratively querying the LLM based on relevant test failure information derived from previous fix
attempts. Similarly, ThinkRepair [100] tackles bug fixing through a two-step process: first performing few-shot
learning using retrieved examples, followed by automatic interactions with LLMs, supplemented by feedback from
test results. In contrast, RepairAgent [5] allows LLMs to interact with predefined tools that assist in the bug-fixing
process. This paper introduces a stage-wise framework comprising multiple ChatGPT agents, each assigned to
distinct stages within the bug management process using specific prompts. To the best of our knowledge, this is
the first attempt to enhance the bug-fixing capabilities of LLMs through the guidance of programmer intent and
the interactive simulation of collaborative behavior.

6.2 Large Language Model
Recent advancements in generative AI have led to a significant increase in the performance and widespread
adoption of LLMs [108]. LLMs undergo unsupervised training using billions of open-source text/code tokens
to achieve comprehensive language modeling. Due to the utilization of diverse data sources and their general
design to acquire cross-domain knowledge, researchers can subsequently utilize LLMs for specific downstream
tasks (e.g., improving the efficiency of programmers in writing, editing, and reviewing code [37, 82, 103]) by
providing tailored prompts or a few demonstrations of the task being solved as input [45]. Among LLMs, the
GPT family developed by OpenAI [6, 9] is particularly notable for its popularity and prowess. Additionally,
numerous attempts have been made to reproduce similar open-source LLMs such as CodeGPT [46], LLaMA [80],
and others. Despite their robust performance, LLMs sometimes struggle to produce accurate results when faced
with complex tasks. In response, researchers have proposed the use of advanced prompting techniques (e.g.,
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Chain of Thoughts (CoT) [86] and Tree of Thoughts (ToT) [95]) to enhance the reasoning capability of LLMs
in natural language processing tasks. These techniques involve a sequence of intermediate reasoning steps in
natural language that culminate in the final output. More recently, researchers have proposed LLMs trained using
reinforcement learning to better align with human preferences. Examples of such models include InstructGPT
[62] and ChatGPT [59], which are initially initialized from a pre-trained model on autoregressive generation
and then fine-tuned using reinforcement learning from human feedback (RLHF) [116]. This fine-tuning process,
which incorporates human preferences, has significantly enhanced the ability of these LLMs to comprehend
input prompts and follow instructions to perform complex tasks [2]. Notably, ChatGPT has achieved superior
performance in various SE tasks [12, 75]. The objective of this paper is to draw insights from effective bug
management practices to enhance the capabilities of existing LLMs in the task of bug fixing. Our experimental
results demonstrate that such alignment enables ChatGPT to interact and collaborate, significantly outperforming
traditional LLMs.

7 CONCLUSION AND FUTURE WORK
This paper introduces a stage-wise framework aimed at enhancing the bug-fixing capabilities of LLMs in an
interactive manner. We explore the potential of ChatGPT by simulating the behavior of human programmers
engaged in bug management. Specifically, we augment the BFP benchmark by providing contextual information
to better guide LLMs in generating the correct patches. Moreover, we decompose the bug-fixing task into four
distinct stages and employ three ChatGPT agents to collectively produce candidate patches for bug resolution
using devised prompts. We conduct extensive experiments to demonstrate the effectiveness of PATCH. We firmly
believe that aligning the collaborative problem-solving skills of programmers with LLMs represents a pivotal
stride towards intelligent SE research.
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