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Abstract    Generating  meaningful  assert  statements  is  one  of  the  key  challenges  in  automated  test  case  generation,

which requires  understanding the intended functionality of  the tested code.  Recently,  deep learning based models  have

shown promise in improving the performance of assert statement generation. However, the existing models only rely on the

test prefixes along with their corresponding focal methods, yet ignore the developer-written summarization. Based on our

observations, the summarization contents usually express the intended program behavior or contain parameters that will

appear directly in the assert statement. Such information will help existing models address their current inability to accu-

rately predict assert statements. This paper presents a summarization-guided approach for automatically generating as-

sert statements. To derive generic representations for natural language (i.e., summarization) and programming language

(i.e., test prefixes and focal methods), we leverage a pre-trained language model as the reference architecture and fine-tune

it on the task of assert statement generation. To the best of our knowledge, the proposed approach makes the first at-

tempt to leverage the summarization of focal methods as the guidance for making the generated assert statements more ac-

curate. We demonstrate the effectiveness of our approach on two real-world datasets compared with state-of-the-art mod-

els.
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1    Introduction

Software  testing  has  been  widely  recognized  as

playing a critical  role in improving software reliabili-

ty  during  the  software  development  life  cycle

(SDLC)[1].  Effective  unit  testing  is  helpful  to  expose

potential software faults early in SDLC to prevent the

release of buggy software. However, writing high-qual-

ity  unit  test  cases  is  a  time-consuming  and  error-

prone task in practice.  To mitigate the manual costs

of testing activities, extensive work has been devoted

to  the  automatic  generation  of  unit  test  cases[2–4].

Even though these tools  represent a notable achieve-

ment towards the goal of automated test case genera-

tion,  several  limitations have been highlighted by re-

cent  work  in  industrial  settings[5, 6].  One  major  chal-

lenge lies in generating meaningful assert statements.

Recently,  deep  learning  (DL)  techniques  have

been  applied  to  automated  assert  statement  genera-

tion[7, 8]. Such DL-based models, e.g., ATLAS (AuTo-

matic Learning of Assert Statements)[8], take the test

prefixes  (i.e.,  test  methods  without  any  assert  state-

ments)  along  with  corresponding  focal  methods  (i.e.,

the basic units under test) as input. Specifically, these

models are trained with a large corpus of paired test

prefixes  and  focal  methods,  including  method  signa-

tures  and  bodies.  By  learning  semantic  representa-

tions  of  the  encoded  input  sequences,  the  trained
 
 

Regular Paper

This  work  was  supported  by  the  National  Natural  Science  Foundation  of  China  under  Grant  Nos.  62072007,  62192733,
61832009, 62192731, and 62192730.

*Corresponding Author

Zhang YW, Jin Z, Wang ZJ et al. SAGA: Summarization-guided assert statement generation. JOURNAL OF COMPUT-

ER  SCIENCE  AND  TECHNOLOGY,  40(1):  138−157,  Jan.  2025.  DOI: 10.1007/s11390-023-2878-6, CSTR: 32374.14.

s11390-023-2878-6

©Institute of Computing Technology, Chinese Academy of Sciences 2025

https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6


models have the ability to automatically generate as-

sert statements.

Nevertheless,  generating  meaningful  assert  state-

ments  is  a  tricky  problem  that  requires  a  complete

understanding of the intended functionality of the fo-

cal  methods.  The  effectiveness  of  existing  models  is

still  limited  due  to  a  lack  of  useful  contextual  infor-

mation (e.g., the summarization of focal methods). In

an  in-depth  investigation  of  the  developer-written

summarization,  we  observe  that  some  intent-related

parameters  within  the  assert  statements  can  be  di-

rectly  discovered  in  the  summarization  contents  but

not in the source code implementations. Additionally,

developer-written  summarization  conveys  important

information about the intended program behavior.

getTrueWindDirection

As  shown  in Fig.1,  the  statement  (line  16)  writ-

ten by developer asserts that the return value of func-

tion  is  equal  to  234.5  within

a  positive  delta  0.1.  Specifically,  the  state-of-the-art

model  ATLAS  only  relies  on  the  source  code  imple-

mentations (lines 5–15) to generate the recommended

assert  statement  (line  17),  and  fails  to  predict  the

delta value. However, in the above example, the sum-

marization  of  the  focal  method  (lines  1–4)  contains

the specific delta value 0.1 (underlined at line 3) in its

content.  This  indicates  that  the  summarization  may

have  explicitly  given  the  intent-related  parameter  if

such  developer-written  summarization  content  is

available.

identifyOSXVersion

userAgent

Considering  another  more  complex  real-world  ex-

ample  shown  in Fig.2,  the  ATLAS-generated  result

(line  30)  correctly  predicts  the  type  of  assert  state-

ment, yet fails to capture the developer's intent from

the content  of  the test  prefix  (lines  21–28)  and focal

method  (lines  6–20).  In  this  example,  the  developer

asserts  that  the  focal  method 

should  return  a  more  accurately  identified  version

number (i.e., “10.7.3”) of the operating system OS X

at  the  resultant  state  according  to  the  input  string

.  Obviously,  it  is  difficult  for  ATLAS  to

generate such a semantically correct assert statement

without  additional  information  pertaining  to  the  in-

tended  functionality  of  the  focal  method.  Likewise,

the  summarization  written  by  the  developer  (lines

1–5)  can  be  utilized  to  better  understand  the  func-

tionality of the focal method and capture the develop-

er's intent.

In summary, an effective approach for automated

assert statement generation should not simply rely on

the  contents  of  source  code  to  predict  both the  type

and  the  logical  nature.  Other  contextual  information

(e.g., summarization) can also be utilized to assist the

generation of  correct  assert  statements.  To that end,

we  present  SummArization-Guided  Assert  Statement

Generation  Model  (SAGA),  to  address  the  limita-

tions  of  existing  neural  generative  approaches.  The

proposed  model  takes  information  from  two  modali-

ties as input, which consists of the source code imple-

mentations  (i.e.,  test  prefix  and  focal  method)  writ-

ten  in  programming  language  (PL)  and  the  summa-

rization contents written in natural language (NL). It

needs  to  learn  semantic  representations  of  both  PL

and NL and correctly generate assert statements writ-

ten  in  PL.  Aiming  to  derive  generic  representations

for  NL  and  PL,  we  take  advantage  of  the  recently

proposed  model  CodeT5[9],  a  Text-To-Text  Transfer

Transformer  (T5)[10] architecture  based  framework

that  leverages  the  NL-PL  pairs  to  learn  a  better

cross-modal  alignment.  We  start  with  CodeT5  to

train  SAGA and then fine-tune  it  for  the  specialized

downstream  task  (i.e.,  assert  statement  generation).

In previous studies[7, 8], the two code implementations

are fed together into the model as a unified code snip-

pet.  Therefore,  the  model  may  have  the  burden  of

identifying the location of different code implementa-

tions.  In  contrast,  the  contents  of  test  prefix,  focal

method, and summarization are isolated by special to-

kens in  this  paper  and then fed to the model,  which

would  provide  SAGA  with  more  information  about

 

/** 

 * Returns the wind direction. degrees True,  

 * to the nearest 0.1 degree. NaN if not available. 

 */ 

public double getTrueWindDirection() { 

    if (hasValue(WIND_DIRECTION_TRUE)) 

        return getDoubleValue(WIND_DIRECTION_TRUE);
 

    

else

 

        

return Double.NaN; 

}

 

@Test 

public void testSetTrueWindDirection() { 

    mwd.setTrueWindDirection(234.5); 

    "<AssertPlaceHolder>"; 

} 

Test Prefix 

Focal Method with Summarization 

assertEquals(234.5, mwd.getTrueWindDirection()) 

ATLAS-Generated Assert Statement  

assertEquals(234.5, mwd.getTrueWindDirection(), 0.1) 

Developer-Written Assert Statement 
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Fig.1.   Example of developer-written assert statement contain-
ing parameter out of the code.
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different  modalities  for  better  learning  the  relation-

ships  between  them.  Our  empirical  investigations  in-

dicate  that  providing  the  summarization  as  guidance

reinforces the performance of assert statement genera-

tion.  By learning the semantic  representations of  NL

and  PL,  SAGA  can  capture  definitive  information

about  relationships  between  the  summarization  con-

tents and the source code implementations, thus aid-

ing the generation of meaningful assert statements.

To evaluate the proposed approach, we adapt two

real-world  datasets[8, 11] to  create  our  variant  dataset

named  CAPS  (Code-Assert  Pairs  with  Summariza-

tion).  Original  datasets  consist  of  paired  source  code

(i.e.,  test  cases  mapped to  corresponding focal  meth-

ods)  collected  from  large-scale  open-source  GitHub

projects.  To  construct  our  adapted  datasets,  we  dis-

card the pairs for which we are not able to obtain the

summarization  of  focal  methods.  Experimental  re-

sults  on  the  modified  datasets  demonstrate  that

SAGA  is  able  to  outperform  the  state-of-the-art  ap-

proaches.

This paper makes the following contributions.

● We present  the  first  attempt  at  leveraging  the

developer-written summarization to guide the task of

assert statement generation.

● We construct adapted datasets for assert state-

ment  generation  that  incorporate  source  code  and

summarization,  which  are  publicly  available  in  our

online package①.

● We  conduct  an  extensive  evaluation  on  assert

statement  generation  and  demonstrate  the  effective-

ness of using summarization for improving the model

performance.

The  remainder  of  this  paper  is  organized  as  fol-

lows. We describe the related work in Section 2. The

proposed  approach  is  introduced  in  detail  in Section

 

/** 

 * This method try to determine the version number of the operating system OS X. 

 * @param user agent string 

 * @return more accurately identified version number 

 */ 

static VersionNumber identifyOSXVersion(final String userAgent) { 

    VersionNumber version = VersionNumber.UNKNOWN; 

    final List<Pattern> patterns = new ArrayList<Pattern>(); 

    patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((\\.\\d+)+)?);")); 

    patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((\\_\\d+)+)?);")); 

    patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((\\_\\d+)+)?)\\)")); 

    for (final Pattern pattern : patterns) { 

        final Matcher m = pattern.matcher(userAgent); 

        if (m.find()) { 

            version = parseFirstVersionNumber(m.group(MAJOR_INDEX).replaceAll("_", ".")); 
            break; 

        } 

    } 

    return version; 

} 

@Test 

public void identifyOSXVersion_versionWithUnderlineAndRoundBracket() { 

    final String userAgent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3)  

                                                     AppleWebKit/534.55.3 (KHTML, like Gecko)  

                                                     Version/5.1.5 Safari/534.55.3"; 

    final VersionNumber v = VersionParser.identifyOSXVersion(userAgent); 

    "<AssertPlaceHolder>"; 

} 

Test Prefix 

Focal Method with Summarization 

assertThat(v, is(v)) 

ATLAS-Generated Assert Statement  

assertThat(v.toVersionString()).isEqualTo("10.7.3") 

Developer-Written Assert Statement 
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Fig.2.  Example of ATLAS-generated assert statement failing to capture the developer's intent.
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3. We outline the experimental setup in Section 4 and

present  the  results  in Section 5.  We  disclose  the

threats  to  the  validity  of  our  approach  in Section 6.

Finally, Section 7 draws conclusions and indicates fu-

ture directions. 

2    Related Work

In recent years, there has been considerable inter-

est  in  the  automatic  generation of  assert  statements.

Numerous automated test generation tools have been

proposed  to  synthesize  assert  statements  using  their

own  methods.  EvoSuite[4] applies  a  novel  hybrid  ap-

proach  that  generates  and  optimizes  the  whole  test

suites  towards  satisfying  a  coverage  criterion.  It  uti-

lizes  the  system  based  on  mutation  and  constraint

solving  to  generate  appropriate  assert  statements.

Specifically,  it  introduces  mutants  into  the  system

and  attempts  to  generate  assert  statements  that  are

capable  of  killing  these  mutants.  Randoop[2, 3] is  an-

other  automated  tool  that  generates  assert  state-

ments using feedback-directed random testing, a tech-

nique inspired by random testing that uses execution

feedback gathered from executing test inputs as they

are created to avoid generating redundant and illegal

inputs. Essentially, a list of contracts, or pieces of log-

ic that the code must follow, is used to guide the gen-

eration of assert statements. These contracts are very

similar  to  developer-written  assert  statements.  How-

ever,  the  contracts  only  provide  the  logic.  Randoop

creates  a  syntactically  correct  assert  statement  that

tests  the  developer's  provided logic  pertaining to  the

test method. JQF[12] combines fuzz testing and prop-

erty-based testing to generate test cases, and the de-

veloper  needs  to  manually  write  the test  input when

encountering an object as a test input.

With  the  advances  of  DL techniques,  an  increas-

ing  number  of  studies  have  so  far  utilized  powerful

DL  models  to  tackle  problems  in  the  realm  of  soft-

ware testing, such as bug localization[13, 14], defect pre-

diction[15–18],  test  case  prioritization[19–22],  and  pro-

gram  repair[23–25].  Such  neural  techniques  have  also

shown  promising  results  in  automated  assert  state-

ment  generation.  One  such  approach  is  ATLAS[8],

which utilizes the recurrent neural network (RNN) to

predict  meaningful  test  oracles  for  given  focal  meth-

ods  and  test  methods.  Mastropaolo et  al.[26] investi-

gated the performance of the T5 architecture on code-

related  tasks  and  found  that  the  T5  model  can  be

successfully  applied  to  the  assert  statement  genera-

tion  task.  Specifically,  they  first  pre-trained  a  T5

model  on  a  large  corpus  consisting  of  English  sen-

tences and source code, and then fine-tuned it on sev-

eral downstream tasks including assert statement gen-

eration.  Mastropaolo et  al.[27] further  analyzed  the

benefits  of  pre-training  and  multi-task  fine-tuning,

and showed that the improved T5 model substantial-

ly boosted the performance on generating meaningful

assert  statements.  Dinella et  al.[28] proposed  an  end-

to-end  test  generation  approach  TOGA  that  inte-

grates neural test oracle generation with EvoSuite for

bug  detection,  utilizing  a  Transformer-based  model

without relying on the unit's implementation. In con-

trast  to  DL-based  approaches,  Yu et  al.[29] leveraged

information  retrieval  (IR)  techniques  for  generating

assert  statements,  which  is  a  two-stage  approach  in-

cluding IR-based assert statement retrieval and adap-

tation.  Furthermore,  they  introduced  an  integration

strategy  by  combining  the  IR-based  approach  with

ATLAS to improve its effectiveness.

Specifically, the aforementioned tools utilize hand-

crafted  patterns  or  heuristics  to  infer  assert  state-

ments for the test units. Instead, SAGA aims to mim-

ic  the  behavior  of  developers  when  writing  assert

statements  by  using  a  DL-based  approach.  Further-

more, existing neural models simply rely on the source

code implementations and lack the information of the

developer-written summarization. Thus, SAGA makes

the  first  attempt  to  leverage  the  summarization  as

complimentary  information  to  accurately  reflect  the

developer's intent to benefit the assert statement gen-

eration task. 

3    SAGA

As  shown  in Fig.3,  the  overall  framework  of

SAGA mainly  consists  of  three  stages:  data  process-

ing,  model  training,  and assert statement generation.

In  this  section,  we  first  present  an  overview  of  the

model  architecture  of  SAGA  and  then  detail  each

component of the proposed approach. 

3.1    Model Architecture

X = (x1, . . . , xm)

In  this  paper,  we  adopt  a  sequence-to-sequence

language  model  to  learn  semantic  representations  of

both PL and NL for the task of assert statement gen-

eration.  The  model  consists  of  an  encoder  that  en-

codes the input sequences and a decoder that sequen-

tially  generates  the  expected  assert  statements,  in

which  the  encoder  and  decoder  are  both  Transform-

ers. Given an input token sequence 
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+ +(i.e.,  test  prefix  focal  method  summarization),

SAGA  first  obtains  the  contextualized  vector  repre-

sentations by projecting them into an embedded vec-

tor  space  through  the  embedding  and  positional  en-

coding layer.
 

X = Embedding(X) + PositionalEncoding(X).

XThen, the vector  is fed into the encoder to cap-

ture  the  long-term  dependencies  from  different  per-

spectives  of  the  input  sequences.  The  encoder  com-

prises  a  stack  of  Transformer  layers,  each  of  which

contains a multi-head self-attention layer followed by

a position-wise  fully  connected feed-forward network.

Instead  of  performing  a  single  attention  function,  all

attention blocks are split up into independent “heads”
whose outputs are concatenated and linearly project-

ed back onto a space with the initial  dimensionality.

Each  individual  attention  block  computes  the  scaled

dot-product  attention  with  different  linear  projec-

tions.  The  details  are  given  by  the  following  equa-

tions:
 

MultiHead(Q, K, V ) =

Concat(head1, . . . , headh)W
O,

 

headi = Softmax

(
qik

T
i√

dk

)
vi, i = 1, . . . , h,

Q K V

qi ki

vi headi

W O

dk

where , ,  and  represent  the  matrices  of

queries,  keys,  and  values,  respectively,  while , ,

and  represent their split matrices for . Specif-

ically,  denotes the weight matrix for linear trans-

formation, and  denotes the scaling factor for com-

 

① Data Processing  

② Model Training  ③ Assert Statement Generation  

Fig.3.  Overview framework of SAGA.
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puting scaled dot-product attention.

The decoder in SAGA is a Transformer-based de-

coder that generates one new token at a time until a

special  stop  token  is  reached.  The  decoder  is  similar

in structure to the encoder except for the usage of the

mask  mechanism  in  multi-head  attention,  and  the

mask mechanism forces to attend only to past tokens

and avoids distraction and information leakage of the

subsequent  tokens  in  training.  Followed  by  the

masked  multi-head  attention  layer  is  another  multi-

head  attention  that  attends  to  both  the  past  tokens

and  the  feature  representations  learned  by  the  en-

coder. Finally, the output of the final decoder layer is

fed  into  a  softmax  layer  to  map  target  token  scores

into target token probabilities.
 

3.2    Data Processing

At this stage, SAGA prepares the collected source

code and summarization in such a manner that it can

/∗

<AssertPlaceHolder> ConsolidatedSource
Sequence

< BOS >

TargetSequence

be directly fed into the encoder-decoder model. SAGA

first  generates  consolidated  input  for  the  CAPS

dataset, which combines the three pieces of developer-

written content into one sequence isolated by special

tokens.  The  consolidation  of  the  CAPS  dataset  con-

sists of  three major steps:  1) ignoring the comments,

new line characters, and redundant whitespaces with-

in the body of test and focal methods, and removing

the  comment-related  symbols  (e.g., “ ”)  within  the

summarization; 2) appending the summarization, sig-

nature, and full body of the focal method to the end of

the  test  method;  3)  replacing  the  entire  assert  state-

ment  from  the  test  method  with  the  unique  token

“ ”. The 

 in Fig.4 shows an example of  CAPS input

where tokens are separated by single whitespace. The

input sequence involves the test prefix, focal method,

and  summarization,  which  are  isolated  by  different

abbreviate tokens (e.g., “ ” denotes the begin-

ning of  summarization).  And the  in
 

CAPS Input

Data Processing

Pre-Trained Encoder-Decoder Model

@Test

Fig.4.  Pipeline of SAGA.
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Fig.4 is  a single assert  statement that the decoder is

expected to generate. Then, SAGA uses the sentence-

piece  tokenizer[30] to  divide  every  word  token  into  a

sequence of sub-word tokens for alleviating the open-

vocabulary  problem[31].  In  this  manner,  the  tokens

with  low  frequency  can  be  synthesized  more  easily,

thus  making  the  assert  statement  generation  task

more tractable. 

3.3    Model Training

As  illustrated  in Fig.4,  the  training  pipeline  of

SAGA  takes  the  generated  CAPS  dataset  as  input

and works on three different pieces of developer-writ-

ten  content:  1)  the  test  method  that  contains  infor-

mation  on  how  to  test  the  focal  method;  2)  the  full

context  of  the  focal  method;  3)  and  the  summariza-

tion  of  the  focal  method  written  in  NL.  We  begin

with  the  pre-trained  model  serving  as  the  reference

architecture for the proposed SAGA framework. First-

ly, the previous data processing step tokenizes the in-

put  CAPS dataset.  We then  perform the  fine-tuning

on the task of assert statement generation. At the fi-

nal step, the encoder in SAGA encodes the tokenized

source  sequence,  and  the  decoder  sequentially  pre-

dicts the assert statement. 

3.3.1    Pre-Training

Based  on  the  empirical  findings  from  existing

datasets,  we  believe  that  developer-written  summa-

rization can be beneficial to models specialized in the

assert  statement  generation  task.  Moreover,  com-

pared  with  the  other  two  code  implementations,  we

consider the summarization as a different modality. In

order to learn generic representations for NL and PL,

we leverage the state-of-the-art model CodeT5 as the

starting  point  to  train  SAGA.  That  is,  we  can  take

the learned parameters of a pre-trained model and use

them as initialization for SAGA. The goal of SAGA is

to  automatically  synthesize  an  assert  statement  for

the  given  test  prefix,  focal  method,  and  summariza-

tion. We formulate this task as a text-to-text predic-

tion, which is consistent with CodeT5's design. Thus,

by  using  the  learned  parameters  pre-trained  on  the

colossal  clean crawled corpus,  SAGA is  able  to learn

many generic patterns that can be directly applied to

the task of generating assert statements. In addition,

we  isolate  different  input  modalities  with  special  to-

kens  (as  described  in Subsection 3.2),  which  would

further  benefit  SAGA  in  using  CodeT5  to  learn  the

relationship between NL and PL. 

3.3.2    Fine-Tuning

D D

Di = {c, a}
c = (t, f, s) t

f s

a

c → a

p(a|c)

At this  stage,  we fine-tune the  pre-trained model

for the task of generating assert statements. The fine-

tuning  techniques  can  optimize  the  pre-trained  pa-

rameters  to  make  them  more  suitable  for  the  down-

stream  tasks.  Specifically,  we  represent  the  assert

statement generation task in a “text-to-text” format,

where the input is a consolidated sequence of test pre-

fix,  focal  method,  and  summarization,  and  the  out-

put is the expected assert statement. The fine-tuning

process  is  performed  using  the  training  corpus  of

CAPS dataset , and each instance within  can be

formally  represented  as  a  pair ,  where

 comprises  the  test  prefix ,  the  corre-

sponding  focal  method ,  and  the  summarization ,

and  denotes the developer-written assert statement.

The fine-tuning objective is to minimize the cross-en-

tropy loss by learning the mapping  as a condi-

tional probability . 

3.4    Assert Statement Generation

To sum up,  the  encoder  learns  representations  of

every sub-word token in the input source sequence us-

ing  all  input  instances  in  the  training  corpus,  essen-

tially  encoding  the  whole  input  information  in  every

input  sub-word  token  representation.  The  self-atten-

tion  mechanism  allows  the  decoder  to  attend  to  all

previously  generated  sub-word  tokens  and  decide  on

generating the correct token at the correct place. Dur-

ing inference, SAGA uses beam search to generate the

assert  statement  sequentially.  Once  the  decoder

reaches the stop token, SAGA outputs the top-ranked

sequence in the beam search. SAGA then detokenizes

the sequence of  sub-word tokens to restore the origi-

nal sequence. Finally, we compare the detokenized se-

quence with the target sequence to determine whether

the SAGA-generated assert statement exactly match-

es the developer-written one. 

4    Experimental Setup
 

4.1    Experimental Subjects

During the dataset construction process,  our goal

is to map the test methods to their corresponding fo-
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cal methods. For this task, we first mine a 100k sam-

ple of public GitHub repositories written in the Java

programming  language,  which  has  been  used  in  the

previous  studies[8, 11].  Next,  we  parse  the  selected

projects  and  extract  all  the  declared  methods  with

their  associated  metadata  (e.g.,  annotations,  signa-

tures, and variables) using Spoon[32]. The parsed code

will be utilized for identifying focal methods as well as

augmenting  the  focal  methods  with  summarization.

Finally, for a particular test method, we map it to the

corresponding  focal  method  for  deriving  the  CAPS

dataset. 

4.1.1    Test and Focal Method Mapping

In  this  stage,  we  establish  the  test-to-code  trace-

ability  links  (i.e.,  mapping  the  corresponding  focal

method to each test method) for the extracted meth-

ods.  To  this  aim,  we  introduce  the  following  hybrid

heuristic strategy in this paper.

�Test�

● Naming  Convention  (NC).  Considering  the  in-

tention behind NC, test method names are often simi-

lar  to  those  of  the  corresponding  focal  methods.

Therefore,  the  first  heuristic  strategy  attempts  to

match the test method with a focal method having a

name  that  matches,  after  removing  the  possible

 prefix  or  suffix.  If  the  names  match  exactly,

the  focal  method  is  correctly  identified  for  the  test

method.

● Static  Call  Graph  (SCG).  The  NC  technique

would fail  to  identify  the focal  method when no test

method  name  contains  its  name.  To  address  the

drawback  of  NC,  we  then  use  SCG to  aid  the  map-

ping process if the previous heuristic strategy does not

identify any focal method. The second heuristic strat-

egy hypothesizes that we can derive the focal method

by inspecting method invocations in the test methods.

To  identify  the  focal  method  of  a  particular  test

method, we begin by collecting all  production classes

that are the destination of an outgoing method invo-

cation within the test method and selecting the most

referenced  production  class  as  the  focal  class.  Then,

we  compute  the  intersection  between  the  list  of

method  invocations  within  the  test  method  and  the

list  of  methods  declared  within  the  focal  class  by

querying  the  complete  signature  string.  If  the  inter-

section is a unique method, then we select the method

as the focal method. 

4.1.2    CAPS Dataset Construction

CAPSA CAPSM

CAPSA
CAPSM

CAPSA CAPSM

After identifying the corresponding focal  methods

for  all  the  test  methods,  we  further  filter  the  focal

methods  without  developer-written  summarization  to

construct  the  CAPS dataset.  Specifically,  CAPS is  a

corpus  of  test  prefixes,  corresponding  focal  methods

with summarization, and assert statements. Addition-

ally,  due to the possibility of  cloning methods across

different  GitHub repositories,  we  further  exclude  du-

plicated  instances  to  prevent  the  same  instance  ap-

pearing  in  both  the  training  and  testing  sets.  After

preprocessing, we create two adapted CAPS datasets

(referred  to  as  and )  by  modifying

ATLAS[8] and Method2Test[11],  respectively.  As men-

tioned  in  the  previous  study[8],  the  original  ATLAS

dataset  is  constructed  in  a  simplified  way  that  ex-

cludes  some  challenging  cases  (i.e.,  the  assert  state-

ments that contain tokens absent from the input con-

tents)  for  generation.  In  this  paper,  and

 include  the  cases  of  assert  statements  with

unknown tokens.  and  contain a total

of 77 931 and 117 709 unique  instances,  respectively.

Next, we further split each dataset into training, vali-

dation,  and  testing  sets  by  the  ratio  of  8:1:1.  The

dataset split is performed carefully by taking into ac-

count  possible  data  leakage.  To  be  specific,  any  two

instances  belonging  to  the  same  GitHub  repository

cannot be put in two different sets (e.g., one in train-

ing and the other in testing). In other words, all  the

instances  belonging  to  the  same  GitHub  repository

will  be  put  in  the  same  set. Table 1 reports  the  de-

tailed  statistics  of  the  two  datasets,  where  MaxL,

MinL,  and  AvgL  denote  the  maximum  length,  the

minimum length, and the average length, respectively. 

4.2    Experimental Design

We  conduct  experiments  on  the  two  adapted

CAPS datasets to evaluate the effectiveness of SAGA.
 

Table  1.    Detailed Statistics of Two Adapted CAPS Datasets

Dataset Split
(# of Instances)

Source Code Length
(# of Tokens)

Summarization Length
(# of Tokens)

Assert Statement Length
(# of Tokens)

Training Validation Testing MaxL MinL AvgL MaxL MinL AvgL MaxL MinL AvgL

CAPSA 62 386 7 756 7 789 984 11 131.8 659 3 31.0 747 4 12.8

CAPSM 93 246 11 492 12 971 982 16 182.5 726 3 36.2 529 3 13.1
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In  this  paper,  we  compare  SAGA with  the  following

five baselines that are related to our work.

● TestNMT[7]:  an  experimental  approach  to  test

generation  using  an  RNN-based  NMT  model,  allow-

ing a developer to generate an approximate test for a

given function.

● ATLAS[8]: a DL-based model that uses the RNN

encoder-decoder  with  the  copy-attention  mechanism

to generate assert statements.

● T5[26]: a pre-trained model that is fine-tuned us-

ing  the  ATLAS  dataset[8] for  the  assert  statement

generation task.

● T5-Extension[27]: an extended version of the T5

model[26] paying  particular  attention  at  the  role

played  by  pre-training  and  multi-task  fine-tuning  on

the model's performance.

● Integration[29]:  an  IR-based  approach  combined

with  ATLAS  to  enable  more  powerful  assert  state-

ment generation.

OpenNMT-py

We initialize SAGA with the pre-trained CodeT5-

small  checkpoint② from  the  Huggingface's  website.

We adopt  the  same architecture  as  the  T5[10] model,

consisting of 8-headed attention and six layers in both

the encoder and decoder. We set the maximum source

and  target  sequence  lengths  both  to  512  and  the

batch  size  to  256.  For  the  implementation  of  base-

lines, we reimplement TestNMT and ATLAS with the

same architectures and hyper-parameters described in

the  relevant  papers  using [33].  As  for  T5

and T5-Extension, we use the publicly released check-

points. As for integration, we download the available

source code provided by the authors. To make a fair

comparison,  we uniformly use  the  training set  of  the

CAPS  dataset  to  train  or  fine-tune  baselines  and

SAGA on the task of assert statement generation, re-

spectively. During the training or fine-tuning step, we

train each corresponding model for a maximum of 100

epochs. After each epoch, we compute the loss on the

validation set and save the model with the minimum

validation  loss.  To  avoid  the  over-fitting  issue,  we

perform  early  stopping  if  the  validation  performance

does not improve for five consecutive epochs.  During

testing,  we use a beam search and set the beam size

to five. Finally, we evaluate the trained model on the

testing  set  and  report  the  comparison  results  in  this

paper.  We  conduct  experiments  on  four  NVIDIA

GTX 1080Ti GPUs. 

4.3    Experimental Metrics

To  quantitatively  compare  the  performance  of

SAGA  with  the  baselines,  we  choose  the  following

three widely used metrics[7, 8, 29].

● Accuracy. This paper uses the top-1 accuracy to

measure the performance of the proposed approaches.

When the generated assert statement matches exact-

ly  with  the  developer-written  assert  statement,  it  is

correct. Otherwise, it is incorrect.

● BLEU. The BLEU (Bilingual Evaluation Under-

study)[34] score  is  a  variant  of  the  precision  metric

widely  used  to  assess  the  quality  of  NMT  systems.

This  metric  can  calculate  the  similarity  by  comput-

ing  the n-gram  precision  of  a  candidate  sentence  to

the  reference  sentence,  with  a  penalty  for  the  overly

short  length.  In  this  paper,  we  report  the  BLEU-4

score.

● ROUGE.  ROUGE  (Recall-Oriented  Under-

study  for  Gisting  Evaluation)[35] formally  calculates

an n-gram recall between a candidate sentence and a

set  of  reference  sentences.  In  this  paper,  we  present

the  value  of  ROUGE-L,  which  computes  the F-mea-

sure based on the longest common subsequence. 

5    Results and Analysis

In  this  section,  we  present  the  experimental  re-

sults for measuring the performance of SAGA and an-

swering the following three research questions (RQs).

● RQ1.  How does SAGA perform compared with

the state-of-the-art baselines?

● RQ2. What is the effectiveness of the developer-

written  summarization  on  the  task  of  assert  state-

ment generation?

● RQ3.  What  is  the  quality  of  the  generated  in-

correct assert statements? 

5.1    Answering RQ1

To answer this question, we compare SAGA with

five  baselines  on  two  adapted  datasets.  We  remove

the  summarization  contents  from  the  CAPS  corpus

when training the baselines. In particular, we observe

that  each  class  name  within  the  fine-tuning  datasets

of  T5  and  T5-Extension  is  preceded  by  its  complete

package name (e.g., the String class is tokenized as ja-

va. lang. String). Thus, we also apply such a modifi-
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cation  to  the  two  datasets  when  training  the  two

baselines. 

5.1.1    Experimental Metrics Evaluation

Table 2 shows the model performance on the two

datasets in terms of the three evaluation metrics. The

best  result  for  each  metric  is  marked  in  bold.  As

shown  in Table 2,  SAGA  substantially  outperforms

the  five  baselines  on  both  datasets.  Specifically,

SAGA achieves  an  accuracy  of  53.1%  and  19.8%  on

the two datasets,  respectively,  which achieves a rela-

tive  improvement  of  42.7%  and  40.4%  over  the  best

baseline  model  integration,  respectively.  In  terms  of

the  BLEU-4  metric,  SAGA  obtains  75.56  and  39.17

scores  on  the  two  datasets,  respectively,  which  is

15.83  and  16.39  points  higher  than  integration,  re-

spectively.  In  terms of  the  ROUGE-L metric,  SAGA

obtains  85.96  and  65.15  scores  on  the  two  datasets,

respectively, which is 6.45 and 2.89 points higher than

integration, respectively.

In addition, we observe that T5 yields poorer per-

formance on the two datasets  compared with the re-

sults in the original paper[26]. Since we use the public

source  code  provided  by  the  authors  and  follow  the

same  training  strategy  as  in  the  original  paper,  we

further look into the datasets and draw the following

CAPSA CAPSM

CAPSA
CAPSM

possible reasons. 1) On  and , the aver-

age length of  the assert statements (after adding the

complete package name to the front of each declared

class) in the testing set is 21.69 and 22.32 tokens, re-

spectively, while the average length is 17.25 tokens in

T5's testing set. Thus, the need for generating longer

assert statements may be a reason for decreasing the

model  performance.  Furthermore,  because  the  com-

plete package name list typically consists of fixed pat-

terns,  T5 achieves a comparable BLEU-4 score while

maintaining  low  accuracy.  2)  Since  and

 contain the challenging cases of assert state-

ments  with  unknown  tokens,  however,  T5  is  fine-

tuned  on  the  dataset  that  excludes  such  challenging

cases.  Therefore,  T5  may  be  less  capable  of  dealing

with  open-vocabulary  issues.  3)  After  analyzing  the

vocabulary of T5 dataset, we discover that all upper-

case  letters  are  replaced  with  lowercase  letters.  Such

modifications  would  negatively  change  the  tokens

with different semantics into the same and reduce the

difficulty of this task as well. 

5.1.2    Assert Statement Types Evaluation

In  addition,  we  also  analyze  the  types  of  assert

statements that are correctly generated by each mod-

el. Table 3 presents  the  accuracy  results  on  assert
 

Table  2.    Comparison Results of the Three Metrics for RQ1

Model CAPSA CAPSM
Accuracy (%) BLEU-4 ROUGE-L Accuracy (%) BLEU-4 ROUGE-L

TestNMT 9.5 21.74 60.95 1.1 2.87 46.04

ATLAS 18.0 28.70 70.01 7.6 14.22 60.36

T5 9.1 26.44 43.94 2.1 20.31 49.74

T5-Extension 23.8 33.02 72.15 7.6 21.86 57.85

Integration 37.2 59.73 79.51 14.1 22.78 62.26

SAGA 53.1 75.56 85.96 19.8 39.17 65.15

 

Table  3.    Detailed Statistics of Each Assert Type

Dataset Model True False Null NotNull Equals Same ArrayEquals That Other

CAPSA TestNMT 148(12.8%) 12(2.9%) 64(17.4%) 83(21.7%) 377(9.8%) 0(0.0%) 18(12.5%) 38(2.7%) –

ATLAS 207(17.9%) 55(13.1%) 105(28.6%) 198(51.8%) 687(17.9%) 4(3.8%) 36(25.0%) 107(7.7%) –

T5 146(12.6%) 15(3.6%) 58(15.8%) 75(19.6%) 329(8.6%) 0(0.0%) 9(6.3%) 80(5.8%) –

T5-Extension 342(29.6%) 76(18.1%) 112(30.5%) 146(38.2%) 903(23.6%) 9(8.6%) 37(25.7%) 227(16.3%) –

Integration 469(40.6%) 116(27.7%) 163(44.4%) 221(57.9%) 1 404(36.7%) 38(36.2%) 60(41.7%) 424(30.5%) –

SAGA 663(57.4%) 221(52.7%) 218(59.4%) 266(69.6%) 1 935(50.5%) 54(51.4%) 72(50.0%) 704(50.7%) –

CAPSM TestNMT 0(0.0%) 1(0.2%) 0(0.0%) 1(0.2%) 136(2.4%) 0(0.0%) 0(0.0%) 0(0.0%) 11(1.6%)

ATLAS 77(5.0%) 47(8.8%) 123(24.9%) 181(28.4%) 349(6.2%) 0(0.0%) 24(8.6%) 63(2.1%) 120(17.8%)

T5 45(2.9%) 5(1.0%) 16(3.2%) 3(0.5%) 130(2.3%) 0(0.0%) 10(3.6%) 22(0.7%) 36(5.3%)

T5-Extension 140(9.0%) 57(10.7%) 107(21.7%) 68(10.7%) 462(8.2%) 0(0.0%) 33(11.8%) 50(1.6%) 67(9.9%)

Integration 277(17.8%) 57(10.7%) 163(33.1%) 164(25.7%) 689(12.3%) 15(12.0%) 77(27.6%) 258(8.4%) 125(18.5%)

SAGA 364(23.5%) 153(28.8%) 191(38.7%) 165(25.9%) 1 093(19.5%) 16(12.8%) 96(34.4%) 350(11.4%) 136(20.1%)
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assertThrows fail
CAPSA

assertThat

assertThat
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statements of different types (with the number of ex-

act matches and their percentage). Note that the last

column indicates the results of four other assert state-

ment  types  (i.e., , ,

, and ) that are not included in the

 dataset. As it can be seen in Table 3, SAGA

is able to consistently outperform the baselines in all

the  types  on  both  datasets.  The  distribution  of  each

type correctly generated by SAGA is relatively even,

which  mitigates  the  possible  threat  that  SAGA  is

only  capable  of  generating  a  specific  type  of  assert

statement.  Watson et  al.[8] hypothesize  that  the

 statements are more difficult to generate

due to the nature of the assert itself. Despite the com-

plexities of  statements, as the developer-

written  summarization  often  contains  explicit  hints

about  how  to  understand  the  intended  functionality

of focal method, SAGA is able to achieve high predic-

tion accuracy of 50.7% on the  dataset. As for

the challenging dataset ,  SAGA can still  cor-

rectly  predict  11.4%  of  the  assert  statements  in  the

testing set. 

5.1.3    Length  Distribution  Evaluation  of  Correct

Assert Statement

We  further  investigate  the  ability  of  each  model

to correctly predict long assert statements by analyz-

ing  the  length  distribution  of  generated  assert  state-

ments. Fig.5 shows the  length distribution of  correct

assert statements generated by each model on the two

datasets, where the X-axis represents the length of as-

sert  statements  (i.e.,  the  number  of  tokens  within

each assert  statement)  and the Y-axis  represents  the

number  of  correct  assert  statements  for  each  corre-

sponding  scale  on  the X-axis.  We  exclude  the  two

models  (T5  and  T5-Extension)  with  different  assert

statement  lengths  in  this  comparison  experiment.  As

shown in Fig.5,  it  is  notable that SAGA tends to be

superior  to all  the baselines  in generating both short

and long assert statements.

MeanS MeanL

Table 4 presents the average lengths of short (de-

noted as ) and long (denoted as ) assert

statements generated by each model together with the

corresponding accuracy, and the median values of all

correct assert statements. We regard the assert state-

ments with less than 15 tokens as short in this paper.

The statistic results shown in Table 4 validate our ob-

servation that SAGA is  capable of  correctly generat-

ing both short and long assert statements on the two

datasets.  In  addition,  the  IR-based  model  is  able  to

retrieve long sequences from the training corpus, and

integration thus achieves a comparable result against

SAGA. 

5.1.4    Answer to RQ1

In  summary,  the  proposed  SAGA framework  sig-
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CAPSA CAPSMFig.5.  Length distribution of correct assert statements. (a) . (b) .

 

Table  4.    Statistic Results of the Lengths of the Generated Correct Assert Statements

Model CAPSA CAPSM
MeanS MeanL Median MeanS MeanL Median

TestNMT 6.75(11.2%) 16.64(3.4%) 6 5.75(1.6%) 0(0%) 6

ATLAS 7.14(22.3%) 17.28(5.2%) 6 5.44(10.7%) 0(0%) 4

Integration 8.56(40.3%) 18.05(27.2%) 10 7.32(17.2%) 17.95(7.3%) 8

SAGA 8.79(58.3%) 18.18(38.0%) 10 7.43(24.7%) 18.01(9.1%) 8
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nificantly outperforms the baselines in terms of all the

experimental  metrics.  Our  observations  indicate  that

SAGA is capable of generating both long assert state-

ments and the challenging cases with higher accuracy

against the baselines. 

5.2    Answering RQ2

To answer this question, we evaluate the effective-

ness  of  developer-written  summarization  by  conduct-

ing ablation experiments on each model (i.e., training

the corresponding model  with summarization or  not)

separately. For a fair comparison, the training strate-

gy  and  the  hyper-parameter  settings  are  consistent

with those described in Subsection 4.2. 

5.2.1    Ablation Study

Table 5 presents the comparison results of the ab-

lation  study.  Each  model  comprises  two  lines  of  ex-

perimental  results,  in  which  the  first  line  shows  the

results of the model that is trained without using the

developer-written  summarization  and  the  second  line

shows  the  results  of  using  such  additional  informa-

tion.  As shown in Table 5,  we can observe that  pro-

viding the summarization as complementary informa-

tion  contributes  to  improving  the  performance  of  all

the models.

T1 T2

We also  statistically  compare  the  performance  of

two different treatments in terms of accuracy for each

corresponding  model  using  the  McNemar's  test[36],

which  is  a  non-parametric  statistical  test  suitable  to

the paired dichotomous data summarized in a contin-

gency  table[37].  To  compute  the  test  results  for  two

treatments  (i.e., with summarization) and  (i.e.,

T1 T2

T1

T2

T1 T2

mcnemar mlxtend

oddsratio

without summarization), we firstly construct a contin-

gency table by counting the number of cases in which

1)  both  and  generate  the  correct  assert  state-

ment,  2)  only  generates  the  correct  assert  state-

ment,  3)  only  generates  the  correct  assert  state-

ment, and 4) neither  nor  generates the correct

assert  statement.  Then,  the  McNemar's  test  is  ap-

plied  to  the  constructed  contingency  table  to  check

the  null  hypothesis  stating  that  the  difference  be-

tween two treatments is insignificant. If the reported

p-value is less than the significant level 0.05, the null

hypothesis  will  be  rejected,  and  it  is  drawn that  the

disparity  between  treatments  is  significant  and  not

random.  The  implementation  of  the  McNemar's  test

is  available  at  the  function  of  the 

Python library[38].  To further complement the results

of  McNemar's  test,  we use  the  Python li-

brary③ to compute the odd ratio (OR) for measuring

the  effect  size.  The  OR  value  greater  than  1  means

the usage of augmented information has a positive re-

lationship  with  the  generation  of  meaningful  assert

statements (i.e., more assert statements could be cor-

rectly  generated  with  the  aid  of  providing  additional

summarization).

Table 6 reports  the  results  of  McNemar's  test  to

determine  if  there  are  statistical  differences  when

training  models  with  the  two  different  treatments.

The following results are the observations from Table 6.

T1

<

T1 T2

● As  for  the  five  DL-based models  (TestNMT,

ATLAS,  T5,  T5-Extension,  and  SAGA),  leads  to

significantly  better  results  (p-value  0.05)  with  the

values  of  OR ranging  from 1.03  to  1.43.  This  means

that chances of generating a correct assert statement

using  are 3% to 43% higher when compared with .
 

Table  5.    Comparison Results of the Two Metrics for RQ2

Model CAPSA CAPSM
Accuracy (%) BLEU-4 ROUGE-L Accuracy (%) BLEU-4 ROUGE-L

TestNMT w/o S 9.5 21.74 60.95 1.1 2.87 46.04

w/ S 12.6 25.91 61.52 4.9 12.13 52.12

ATLAS w/o S 18.0 28.70 70.01 7.6 14.22 60.36

w/ S 23.8 39.89 74.74 9.9 17.94 61.90

T5 w/o S 9.1 26.44 43.94 2.1 20.31 49.74

w/ S 9.8 27.52 44.20 3.2 23.24 52.45

T5-Extension w/o S 23.8 33.02 72.15 7.6 21.86 57.85

w/ S 24.7 41.45 73.36 8.1 23.61 59.56

Integration w/o S 37.2 59.73 79.51 14.1 22.78 62.26

w/ S 37.4 60.92 80.13 14.1 22.94 62.56

SAGA w/o S 52.7 75.28 85.53 19.3 38.10 64.69

w/ S 53.1 75.56 85.96 19.8 39.17 65.15

Note: ``w/o S'' denotes without summarization, and ``w/ S'' denotes with summarization.
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T1 T2

T1

● As  for  the  IR -based  model  integration,  we  can

see  that  there  is  no statistically  significant  difference

between  and  (p-value  is  greater  than  0.05).

Nevertheless,  the  value  of  OR  (i.e.,  1.01)  indicates

that  still  improves  the performance of  integration

to some extent.

● In  view  of  the  inconsistent  results  described

above,  we  give  the  following  possible  explanations.

1) Intuitively, the DL-based models are able to direct-

ly learn definitive information from the provided sum-

marization  to  aid  the  assert  statement  generation

task. 2) As the key technique of integration is the IR-

based  assertion  retrieval,  which  is  based  on  the  Jac-

card  similarity  between  the  corresponding  and  given

focal-test  written  in  PL,  solely  providing  additional

summarization  written  in  NL  is  difficult  to  continue

to increase the performance improvements during the

retrieval process.

Additionally,  we  analyze  the  uniqueness  of  cor-

rect assert statements generated by each model. Fig.6

shows  the  overlapping  between  the  correct  assert

statements generated by using input with summariza-

tion  or  not  among each  model  evaluated  on  the  two

datasets.  As  shown  in Fig.6,  we  can  find  that  the

summarization-guided  models  (colored  with  light

green)  tend  to  generate  more  unique  correct  assert

statements that fail  to be generated by models with-

CAPSM

out  using  summarization.  For  example,  587  correct

assert statements are uniquely generated by SAGA on

,  while  520  correct  assert  statements  are

uniquely  generated  by  SAGA without  using  summa-

rization.  By further  investigating the incorrect  assert

statements generated by SAGA, we observe the exis-

tence of equivalent cases that are not exactly matched

with  the  developer-written  ones  but  semantically

equivalent  to  the  developer's  intent.  We  will  discuss

these cases in Subsection 5.3.1. 

5.2.2    Case Study

resultSet

getConcurrency
ResultSet

resultSet

stmt

hostname RemoteMachine

To  better  understand  the  effectiveness  of  using

summarization  as  complimentary  information,  we

present two cases in Fig.7 to demonstrate the ability

of  summarization  to  guide  the  generation  of  assert

statements. As a case study, we take the SAGA mod-

el  as  an  example  to  show the  difference  between  as-

sert statements generated with or without summariza-

tion. Fig.7(a) shows an example of summarization ex-

plicitly providing the related token (i.e., ),

which  is  missing  from  the  test  prefix  and  focal

method. Fig.8 visualizes the attention weights for the

encoder and decoder while generating the expected as-

sert statement. We can observe that SAGA learns the

relationship that function  belongs to

class  from  summarization  and  thus  cor-

rectly predicts the token  as the parameter

for  the  assert  statement.  Nevertheless,  SAGA  pre-

dicts  an  irrelevant  token  when  the  summariza-

tion is not used. Fig.7(b) depicts an example of sum-

marization used to convey the intended functionality

of the focal method. From the content of the summa-

rization,  we  can  clearly  understand  that  the  focal

method  completes  the  functionality  of  returning  the

 of .  As  shown  in Fig.9,

 

Table  6.    McNemar's Test (p-Value and OR) in Terms of the
Accuracy Metric for RQ2

Model CAPSA CAPSM

p-Value OR p-Value OR

TestNMT < 0.05 1.38 < 0.05 1.21

ATLAS < 0.05 1.43 < 0.05 1.36

T5 < 0.05 1.08 < 0.05 1.10

T5-Extension < 0.05 1.06 < 0.05 1.07

Integration 0.33 1.01 0.61 1.01

SAGA < 0.05 1.03 < 0.05 1.04

 

w/ S 

w/o S 

CAPSA

CAPSM 

SAGA Integration TestNMTATLAS 

1 237 162 620

 

555 185 428 3 749 
341 397

 

1 981 
520 587 

2 653 
242261

 

1 759 66

73 

642 342640 511
 

23 126 

T5

580 132 
180  

269 116 
151 

T5-Extension  

1 519 333 

408 

673 311 
374

Fig.6.  Overlapping of the correct assert statements.
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machine mac
SAGA  indeed  learns  the  relationship  that  the  host-

name  of  is  `` ''.  Likewise,  SAGA fails  to

predict  the  token  if  the  summarization  is  not  avail-

able. These results reveal the effectiveness of our pro-

posed approach for assert statement generation.
 

5.2.3    Answer to RQ2

To sum up, providing the developer-written sum-

marization can improve the performance of the assert

statement  generation  task.  Specifically,  the  summa-

rization  contents  may  explicitly  contain  the  related

tokens directly appearing as parameters in the assert

statements or  convey the intended program behavior

via  detailed  functionality  descriptions  of  the  focal

methods  to  assist  in  the  generation  of  correct  assert

statements.
 

5.3    Answering RQ3

To  answer  this  research  question,  we  inspect  the

assert  statements  that  are  not  exactly  matched  with

the ground truth. The evaluation is split into two as-

pects: 1) discussing the semantically equivalent exam-

ples  in  the  incorrect  assert  statements  generated  by

SAGA; 2) calculating the edit distance of incorrect as-

 

testHostnameGetter ( ) { RemoteMachine machine = new

RemoteMachine ( "mac", 10 ) ; "<AssertPlaceHolder>" ; } 

  

Developer-Written 

Assert Statement 

SAGA 

assertEquals ( "mac", machine. getHostname ( ) ) 

 

String getHostname ( ) { return hostname ; } 

 

Getter method of the hostname.  

@return hostname of RemoteMachine. 

Test Prefix 

Focal Method 

Summarization 

w/ S 

w/o S 

Developer-Written 

Assert Statement 

SAGA 

Test Prefix 

Focal Method 

Summarization 

w/ S 

w/o S 
assertEquals ( "mac", machine. getHostname ( ) ) 

assertEquals ( "192.168.0.1", machine. getHostname ( ) ) 

shouldCallConcurrency ( ) throws SQLException 

{ "<AssertPlaceHolder>" ; }  

assertThat ( resultSet. getConcurrency ( ), is ( 0 ) ) 

 

getConcurrency ( ) throws SQLException 

{ notClosed ( ) ; return 0 ; } 

{@inheritDoc } @see 

java.sql.ResultSet#getConcurrency() 

assertThat ( resultSet. getConcurrency ( ), is ( 0 ) ) 

assertThat ( stmt. getConcurrency ( ), is ( 0 ) ) 

(b)(a)

CAPSA
CAPSM

Fig.7.  Examples showing the effect of summarization in SAGA's performance. (a) Example from the  dataset. (b) Example
from the  dataset.

 

Fig.8.  Visualization of attention weights for the example in Fig.7(a).
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sert statements generated by SAGA. 

5.3.1    Equivalence Evaluation

t.getCount() == 999

assertEquals(999, t.getCount())

In this subsection, we manually analyze the incor-

rect  assert  statements  generated  by  SAGA  and  pre-

sent qualitative discussion. As shown in Fig.10, the list

of  equivalent examples showcase some of  the SAGA-

generated assert statements that do not exactly match

with  the  ground  truth,  but  they  are  semantically

equivalent  to  the  developer-written  ones.  For  exam-

ple, the developer checks that  is

true,  while  SAGA suggests  an  equivalent  check  with

.  Similarly,  SAGA

suggests  to  assert  a  null  string  by  checking  whether

the length of string is equal to 0, while the developer

assertEquals

assertThat

uses  the  ``  ''  string  directly.  In  another  instance,

SAGA  suggests  to  use  the  statement

to  judge  the  equivalence  of  two  objects  rather  than

the  statement.  The  last  two  instances

show  that  SAGA  is  able  to  successfully  predict  the

full  assert  statements  except  the  given  message

strings  (one  is  different  and  the  other  is  missing).

Given that the message strings do not provide crucial

logic checks in the test cases, these instances are still

valuable for the developers.

The existence of equivalence results highlights the

need for additional  reasonable metrics  beyond simple

accuracy, particularly, metrics that can recognize cas-

es  where  the  generated  assert  statement  is  different

yet  equivalent  to  the  one  written  by  developers,  as

well as the non-equivalent ones that can also success-

 

Fig.9.  Visualization of attention weights for the example in Fig.7(b).
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fully  pass  the  given  unit  test  and  cover  the  focal

method. 

5.3.2    Edit Distance Evaluation

pyxDamerauLevenshtein

CAPSA CAPSM

This  evaluation  computes  the  absolute  token-

based edit distance between the incorrect assert state-

ments  and  the  manually  written  ground  truth  (i.e.,

the minimum number of operations required to trans-

form  incorrect  assert  statements  into  correct  assert

statements).  The  edit  distance  metric  gives  evidence

to how useful incorrect assert statements are to devel-

opers.  Intuitively, the easier it  is  to transform an in-

correct  assert  statement  into  a  correct  assert  state-

ment, the more useful the assert statement would be

for developers. This evaluation is conducted by using

the  assert  statements  generated  for  RQ1.  We  com-

pute the Levenshtein distance between the model-gen-

erated  and  developer-written  assert  statement  using

the  library④. As is shown in

Table 7,  the  statistic  results  reveal  that  SAGA  per-

forms  the  best  in  edit  distance,  with  the  five  base-

lines  trailing  behind.  Specifically,  the  number  of  as-

sert statements that SAGA cannot generate correctly

on  and  is 3 653 and 10 403,  respec-

tively.  When  the  edit  distance  is  1,  there  are 1 123

(30.7%)  and 1 089 (10.5%)  incorrect  assert  state-

ments that can be converted into correct assert state-

ments  on  the  two  datasets,  respectively,  while 1 968

(53.8%) and 2 776 (26.7%) assert statements have an

edit distance that no more than three tokens from the

correct assert statements. In summary, there is a con-

siderable amount of incorrect assert statements gener-

ated by SAGA that are similar to the developer-writ-

ten  ground  truth.  Many  incorrect  results  can  be

turned into perfect predictions by modifying only one

token  (e.g.,  related  constant  or  the  assert  statement

type). Thus, these incorrect assert statements can al-

so be useful to aid the developers. 

6    Threats to Validity

In  this  section,  we  illustrate  the  main  threats  to

the  validity  of  our  approach,  which are  listed  as  fol-

lows.

● External  Threat.  The quality of  the datasets  is

the principal threat to external validity in this paper.

We create the CAPS dataset by modifying two exist-

ing  datasets[8, 11],  which  are  all  collected  from  open-

source  GitHub  repositories.  During  the  construction

 

assertTrue(t.getCount() == 999) 
assertEquals(999, t.getCount()) 

assertThat(formatter. format(DayOfWeek. WEDNESDAY). toString ( ), is ( "Wed" ) ) 
assertEquals("Wed", formatter. format(DayOfWeek. WEDNESDAY). toString ( ) ) 

assertEquals("", string) 
assertEquals(0, string.length()) 

Equivalent Assert Statements 

Ground Truth: 
SAGA: 

assertFalse("Run should be considered new", context. isNewRunQueuedUp ( ) ) 
assertFalse("Run should NOT be considered new", context. isNewRunQueuedUp ( ) ) 

Ground Truth: 
SAGA: 

Ground Truth: 
SAGA: 

Ground Truth: 
SAGA: 

Ground Truth: 
SAGA: 

assertEquals("Length of joined expressions is correct", totalLength, joined.length ( ) ) 
assertEquals(totalLength, joined.length ( ) ) 

Fig.10.  Examples of equivalent cases generated by SAGA.

 

Table  7.    Comparison Results of Edit Distance Analysis

Model CAPSA CAPSM
1 2 3 1 2 3

TestNMT 732(10.4%) 784(11.1%) 691(9.8%) 261(2.0%) 704(5.5%) 555(4.3%)

ATLAS 1 085(17.0%) 583(9.1%) 573(9.0%) 1 177(9.8%) 751(6.3%) 888(7.4%)

T5 712(10.1%) 183(2.6%) 59(0.8%) 157(1.3%) 254(2.0%) 204(1.6%)

T5-Extension 923(15.5%) 451(7.6%) 506(8.5%) 640(5.3%) 451(3.8%) 629(5.2%)

Integration 1 352(27.6%) 529(10.8%) 444(9.1%) 1 060(9.7%) 837(7.7%) 775(7.1%)

SAGA 1 123(30.7%) 490(13.4%) 355(9.7%) 1 089(10.5%) 893(8.6%) 794(7.6%)
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process, we use some heuristic rules to identify the fo-

cal methods for a given test method. Although we did

a  rigorous  data  processing,  there  may  be  still  some

noise. In our future research, we will adopt more opti-

mal  ways  of  establishing  test-to-code  traceability

links[39, 40] for identifying focal methods more precise.

SAGA is also limited by its dependency on the usage

of merely developer-written test cases for model train-

ing.  In  general,  manually  written  test  cases  usually

have  different  characteristics  against  those  generated

by  automated  test  case  generation  tools[41].  As  a  fu-

ture direction, SAGA could be trained on an extend-

ed dataset consisting of test cases automatically gen-

erated  by  tools,  which  more  closely  fits  the  distribu-

tion of tool-generated testing set.

∼

● Internal  Threat.  It  is  widely  known  that  DL-

based models are sensitive to hyper-parameters. Thus

using a sub-optimal hyper-parameter can pose an in-

ternal threat to the validity of SAGA. Due to the lim-

itation  of  computational  resources,  we  cannot  con-

duct a thorough exploration of optimal hyper-parame-

ters in this paper. Since Raffel et al.[10] have explored

effective  settings  of  hyper-parameters  through  exten-

sive experiments in previous work, we use the exactly

same hyper-parameters  described by their  paper.  We

acknowledge that there might be room for further im-

provement by additional  tuning.  It  is  noted that the

large-scale  language  models  (e.g.,  Codex[42])  trained

for  code  completion  are  not  included  as  baselines  in

this  paper,  since  SAGA  has  a  much  smaller  model

size  of  60M parameters  than  theirs  of  12B  ( 200x).

We will further conduct an empirical study on the ef-

fectiveness  of  these  general-purpose  models  on  the

task of assert statement generation as future work.

● Construct Threat. In this paper, the experimen-

tal  metrics  used  to  evaluate  model  performance  are

referred  to  as  the  construct  threat.  We  adopt  three

metrics that have been used in previous studies[7, 8, 29].

Although these metrics do not represent human judg-

ment, they can be used to quickly and quantitatively

evaluate the model performance. In the future, we will

conduct more human evaluations of the models. 

7    Conclusions

In  this  study,  we  proposed  a  novel  deep  learning

(DL)-based approach SAGA for assert statement gen-

eration.  To  accurately  reflect  the  developer's  intent,

we made the first attempt to leverage the summariza-

tion  of  the  focal  method  as  complementary  informa-

tion. We then took the advantage of a state-of-the-art

encoder-decoder  language  model,  Code  T5,  to  auto-

matically generate meaningful assert statements. Em-

pirical  results  demonstrated  that  the  developer-writ-

ten summarization can provide definitive information

for  improving  the  performance  of  assert  statement

generation,  outperforming  the  state-of-the-art  ap-

proaches in terms of all the experimental metrics.

In the future, we plan to use static analysis tools

to  collect  additional  contextual  information  (e.g.,

global context at project-level) pertinent to the given

focal  method,  aiming  to  assist  SAGA  in  generating

more precise assert statements by augmenting the fo-

cal  context  input.  Furthermore,  semi-supervised  pre-

training on projects  where SAGA will  be used to in-

fer  assert  statements  could  help  our  proposed  model

to familiarize with project-related knowledge.  As dis-

cussed  earlier,  we  foresee  that  such  DL-based  ap-

proaches could be used to support developers in writ-

ing unit test cases more efficiently in practice. In this

scenario,  we  consider  integrating  SAGA  as  an  IDE

plugin,  which  can  be  regarded  as  a  code  completion

tool  by  automatically  suggesting  assert  statements

while manually writing unit test cases. 
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