

SAGA: Summarization-Guided Assert Statement Generation

Yu-Wei Zhang1, 2 (张俞炜), Member, CCF, Zhi Jin1, 2, * (金　芝), Fellow, CCF, IEEE
Ze-Jun Wang1, 2 (王泽钧), Student Member, CCF, Ying Xing3 (邢　颖), Senior Member, CCF
and Ge Li1, 2 (李　戈), Senior Member, CCF, Member, ACM, IEEE

1 Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871, China
2 School of Computer Science, Peking University, Beijing 100871, China
3 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

E-mail: yuweizhang@pku.edu.cn; zhijin@pku.edu.cn; zejunwang@pku.edu.cn; xingying@bupt.edu.cn; lige@pku.edu.cn

Received September 30, 2022; accepted December 30, 2023.

Abstract Generating meaningful assert statements is one of the key challenges in automated test case generation,

which requires understanding the intended functionality of the tested code. Recently, deep learning based models have

shown promise in improving the performance of assert statement generation. However, the existing models only rely on the

test prefixes along with their corresponding focal methods, yet ignore the developer-written summarization. Based on our

observations, the summarization contents usually express the intended program behavior or contain parameters that will

appear directly in the assert statement. Such information will help existing models address their current inability to accu-

rately predict assert statements. This paper presents a summarization-guided approach for automatically generating as-

sert statements. To derive generic representations for natural language (i.e., summarization) and programming language

(i.e., test prefixes and focal methods), we leverage a pre-trained language model as the reference architecture and fine-tune

it on the task of assert statement generation. To the best of our knowledge, the proposed approach makes the first at-

tempt to leverage the summarization of focal methods as the guidance for making the generated assert statements more ac-

curate. We demonstrate the effectiveness of our approach on two real-world datasets compared with state-of-the-art mod-

els.

Keywords assert generation, deep learning, method summarization, pre-trained language model, unit testing

1 Introduction

Software testing has been widely recognized as

playing a critical role in improving software reliabili-

ty during the software development life cycle

(SDLC)[1]. Effective unit testing is helpful to expose

potential software faults early in SDLC to prevent the

release of buggy software. However, writing high-qual-

ity unit test cases is a time-consuming and error-

prone task in practice. To mitigate the manual costs

of testing activities, extensive work has been devoted

to the automatic generation of unit test cases[2–4].

Even though these tools represent a notable achieve-

ment towards the goal of automated test case genera-

tion, several limitations have been highlighted by re-

cent work in industrial settings[5, 6]. One major chal-

lenge lies in generating meaningful assert statements.

Recently, deep learning (DL) techniques have

been applied to automated assert statement genera-

tion[7, 8]. Such DL-based models, e.g., ATLAS (AuTo-

matic Learning of Assert Statements)[8], take the test

prefixes (i.e., test methods without any assert state-

ments) along with corresponding focal methods (i.e.,

the basic units under test) as input. Specifically, these

models are trained with a large corpus of paired test

prefixes and focal methods, including method signa-

tures and bodies. By learning semantic representa-

tions of the encoded input sequences, the trained

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62072007, 62192733,
61832009, 62192731, and 62192730.

*Corresponding Author

Zhang YW, Jin Z, Wang ZJ et al. SAGA: Summarization-guided assert statement generation. JOURNAL OF COMPUT-

ER SCIENCE AND TECHNOLOGY, 40(1): 138−157, Jan. 2025. DOI: 10.1007/s11390-023-2878-6, CSTR: 32374.14.

s11390-023-2878-6

©Institute of Computing Technology, Chinese Academy of Sciences 2025

https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://doi.org/10.1007/s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6
https://cstr.cn/32374.14.s11390-023-2878-6

models have the ability to automatically generate as-

sert statements.

Nevertheless, generating meaningful assert state-

ments is a tricky problem that requires a complete

understanding of the intended functionality of the fo-

cal methods. The effectiveness of existing models is

still limited due to a lack of useful contextual infor-

mation (e.g., the summarization of focal methods). In

an in-depth investigation of the developer-written

summarization, we observe that some intent-related

parameters within the assert statements can be di-

rectly discovered in the summarization contents but

not in the source code implementations. Additionally,

developer-written summarization conveys important

information about the intended program behavior.

getTrueWindDirection

As shown in Fig.1, the statement (line 16) writ-

ten by developer asserts that the return value of func-

tion is equal to 234.5 within

a positive delta 0.1. Specifically, the state-of-the-art

model ATLAS only relies on the source code imple-

mentations (lines 5–15) to generate the recommended

assert statement (line 17), and fails to predict the

delta value. However, in the above example, the sum-

marization of the focal method (lines 1–4) contains

the specific delta value 0.1 (underlined at line 3) in its

content. This indicates that the summarization may

have explicitly given the intent-related parameter if

such developer-written summarization content is

available.

identifyOSXVersion

userAgent

Considering another more complex real-world ex-

ample shown in Fig.2, the ATLAS-generated result

(line 30) correctly predicts the type of assert state-

ment, yet fails to capture the developer's intent from

the content of the test prefix (lines 21–28) and focal

method (lines 6–20). In this example, the developer

asserts that the focal method

should return a more accurately identified version

number (i.e., “10.7.3”) of the operating system OS X

at the resultant state according to the input string

. Obviously, it is difficult for ATLAS to

generate such a semantically correct assert statement

without additional information pertaining to the in-

tended functionality of the focal method. Likewise,

the summarization written by the developer (lines

1–5) can be utilized to better understand the func-

tionality of the focal method and capture the develop-

er's intent.

In summary, an effective approach for automated

assert statement generation should not simply rely on

the contents of source code to predict both the type

and the logical nature. Other contextual information

(e.g., summarization) can also be utilized to assist the

generation of correct assert statements. To that end,

we present SummArization-Guided Assert Statement

Generation Model (SAGA), to address the limita-

tions of existing neural generative approaches. The

proposed model takes information from two modali-

ties as input, which consists of the source code imple-

mentations (i.e., test prefix and focal method) writ-

ten in programming language (PL) and the summa-

rization contents written in natural language (NL). It

needs to learn semantic representations of both PL

and NL and correctly generate assert statements writ-

ten in PL. Aiming to derive generic representations

for NL and PL, we take advantage of the recently

proposed model CodeT5[9], a Text-To-Text Transfer

Transformer (T5)[10] architecture based framework

that leverages the NL-PL pairs to learn a better

cross-modal alignment. We start with CodeT5 to

train SAGA and then fine-tune it for the specialized

downstream task (i.e., assert statement generation).

In previous studies[7, 8], the two code implementations

are fed together into the model as a unified code snip-

pet. Therefore, the model may have the burden of

identifying the location of different code implementa-

tions. In contrast, the contents of test prefix, focal

method, and summarization are isolated by special to-

kens in this paper and then fed to the model, which

would provide SAGA with more information about

/**

 * Returns the wind direction. degrees True,

 * to the nearest 0.1 degree. NaN if not available.

 */

public double getTrueWindDirection() {

 if (hasValue(WIND_DIRECTION_TRUE))

 return getDoubleValue(WIND_DIRECTION_TRUE);

else

return Double.NaN;

}

@Test

public void testSetTrueWindDirection() {

 mwd.setTrueWindDirection(234.5);

 "<AssertPlaceHolder>";

}

Test Prefix

Focal Method with Summarization

assertEquals(234.5, mwd.getTrueWindDirection())

ATLAS-Generated Assert Statement

assertEquals(234.5, mwd.getTrueWindDirection(), 0.1)

Developer-Written Assert Statement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Fig.1. Example of developer-written assert statement contain-
ing parameter out of the code.

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 139

different modalities for better learning the relation-

ships between them. Our empirical investigations in-

dicate that providing the summarization as guidance

reinforces the performance of assert statement genera-

tion. By learning the semantic representations of NL

and PL, SAGA can capture definitive information

about relationships between the summarization con-

tents and the source code implementations, thus aid-

ing the generation of meaningful assert statements.

To evaluate the proposed approach, we adapt two

real-world datasets[8, 11] to create our variant dataset

named CAPS (Code-Assert Pairs with Summariza-

tion). Original datasets consist of paired source code

(i.e., test cases mapped to corresponding focal meth-

ods) collected from large-scale open-source GitHub

projects. To construct our adapted datasets, we dis-

card the pairs for which we are not able to obtain the

summarization of focal methods. Experimental re-

sults on the modified datasets demonstrate that

SAGA is able to outperform the state-of-the-art ap-

proaches.

This paper makes the following contributions.

● We present the first attempt at leveraging the

developer-written summarization to guide the task of

assert statement generation.

● We construct adapted datasets for assert state-

ment generation that incorporate source code and

summarization, which are publicly available in our

online package①.

● We conduct an extensive evaluation on assert

statement generation and demonstrate the effective-

ness of using summarization for improving the model

performance.

The remainder of this paper is organized as fol-

lows. We describe the related work in Section 2. The

proposed approach is introduced in detail in Section

/**

 * This method try to determine the version number of the operating system OS X.

 * @param user agent string

 * @return more accurately identified version number

 */

static VersionNumber identifyOSXVersion(final String userAgent) {

 VersionNumber version = VersionNumber.UNKNOWN;

 final List<Pattern> patterns = new ArrayList<Pattern>();

 patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((\\.\\d+)+)?);"));

 patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((_\\d+)+)?);"));

 patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((_\\d+)+)?)\\)"));

 for (final Pattern pattern : patterns) {

 final Matcher m = pattern.matcher(userAgent);

 if (m.find()) {

 version = parseFirstVersionNumber(m.group(MAJOR_INDEX).replaceAll("_", "."));
 break;

 }

 }

 return version;

}

@Test

public void identifyOSXVersion_versionWithUnderlineAndRoundBracket() {

 final String userAgent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3)

 AppleWebKit/534.55.3 (KHTML, like Gecko)

 Version/5.1.5 Safari/534.55.3";

 final VersionNumber v = VersionParser.identifyOSXVersion(userAgent);

 "<AssertPlaceHolder>";

}

Test Prefix

Focal Method with Summarization

assertThat(v, is(v))

ATLAS-Generated Assert Statement

assertThat(v.toVersionString()).isEqualTo("10.7.3")

Developer-Written Assert Statement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Fig.2. Example of ATLAS-generated assert statement failing to capture the developer's intent.

140 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

①https://doi.org/10.5281/zenodo.7571911, Jan. 2025.

https://doi.org/10.5281/zenodo.7571911

3. We outline the experimental setup in Section 4 and

present the results in Section 5. We disclose the

threats to the validity of our approach in Section 6.

Finally, Section 7 draws conclusions and indicates fu-

ture directions.

2 Related Work

In recent years, there has been considerable inter-

est in the automatic generation of assert statements.

Numerous automated test generation tools have been

proposed to synthesize assert statements using their

own methods. EvoSuite[4] applies a novel hybrid ap-

proach that generates and optimizes the whole test

suites towards satisfying a coverage criterion. It uti-

lizes the system based on mutation and constraint

solving to generate appropriate assert statements.

Specifically, it introduces mutants into the system

and attempts to generate assert statements that are

capable of killing these mutants. Randoop[2, 3] is an-

other automated tool that generates assert state-

ments using feedback-directed random testing, a tech-

nique inspired by random testing that uses execution

feedback gathered from executing test inputs as they

are created to avoid generating redundant and illegal

inputs. Essentially, a list of contracts, or pieces of log-

ic that the code must follow, is used to guide the gen-

eration of assert statements. These contracts are very

similar to developer-written assert statements. How-

ever, the contracts only provide the logic. Randoop

creates a syntactically correct assert statement that

tests the developer's provided logic pertaining to the

test method. JQF[12] combines fuzz testing and prop-

erty-based testing to generate test cases, and the de-

veloper needs to manually write the test input when

encountering an object as a test input.

With the advances of DL techniques, an increas-

ing number of studies have so far utilized powerful

DL models to tackle problems in the realm of soft-

ware testing, such as bug localization[13, 14], defect pre-

diction[15–18], test case prioritization[19–22], and pro-

gram repair[23–25]. Such neural techniques have also

shown promising results in automated assert state-

ment generation. One such approach is ATLAS[8],

which utilizes the recurrent neural network (RNN) to

predict meaningful test oracles for given focal meth-

ods and test methods. Mastropaolo et al.[26] investi-

gated the performance of the T5 architecture on code-

related tasks and found that the T5 model can be

successfully applied to the assert statement genera-

tion task. Specifically, they first pre-trained a T5

model on a large corpus consisting of English sen-

tences and source code, and then fine-tuned it on sev-

eral downstream tasks including assert statement gen-

eration. Mastropaolo et al.[27] further analyzed the

benefits of pre-training and multi-task fine-tuning,

and showed that the improved T5 model substantial-

ly boosted the performance on generating meaningful

assert statements. Dinella et al.[28] proposed an end-

to-end test generation approach TOGA that inte-

grates neural test oracle generation with EvoSuite for

bug detection, utilizing a Transformer-based model

without relying on the unit's implementation. In con-

trast to DL-based approaches, Yu et al.[29] leveraged

information retrieval (IR) techniques for generating

assert statements, which is a two-stage approach in-

cluding IR-based assert statement retrieval and adap-

tation. Furthermore, they introduced an integration

strategy by combining the IR-based approach with

ATLAS to improve its effectiveness.

Specifically, the aforementioned tools utilize hand-

crafted patterns or heuristics to infer assert state-

ments for the test units. Instead, SAGA aims to mim-

ic the behavior of developers when writing assert

statements by using a DL-based approach. Further-

more, existing neural models simply rely on the source

code implementations and lack the information of the

developer-written summarization. Thus, SAGA makes

the first attempt to leverage the summarization as

complimentary information to accurately reflect the

developer's intent to benefit the assert statement gen-

eration task.

3 SAGA

As shown in Fig.3, the overall framework of

SAGA mainly consists of three stages: data process-

ing, model training, and assert statement generation.

In this section, we first present an overview of the

model architecture of SAGA and then detail each

component of the proposed approach.

3.1 Model Architecture

X = (x1, . . . , xm)

In this paper, we adopt a sequence-to-sequence

language model to learn semantic representations of

both PL and NL for the task of assert statement gen-

eration. The model consists of an encoder that en-

codes the input sequences and a decoder that sequen-

tially generates the expected assert statements, in

which the encoder and decoder are both Transform-

ers. Given an input token sequence

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 141

+ +(i.e., test prefix focal method summarization),

SAGA first obtains the contextualized vector repre-

sentations by projecting them into an embedded vec-

tor space through the embedding and positional en-

coding layer.

X = Embedding(X) + PositionalEncoding(X).

XThen, the vector is fed into the encoder to cap-

ture the long-term dependencies from different per-

spectives of the input sequences. The encoder com-

prises a stack of Transformer layers, each of which

contains a multi-head self-attention layer followed by

a position-wise fully connected feed-forward network.

Instead of performing a single attention function, all

attention blocks are split up into independent “heads”
whose outputs are concatenated and linearly project-

ed back onto a space with the initial dimensionality.

Each individual attention block computes the scaled

dot-product attention with different linear projec-

tions. The details are given by the following equa-

tions:

MultiHead(Q, K, V) =

Concat(head1, . . . , headh)W
O,

headi = Softmax

(
qik

T
i√

dk

)
vi, i = 1, . . . , h,

Q K V

qi ki

vi headi

W O

dk

where , , and represent the matrices of

queries, keys, and values, respectively, while , ,

and represent their split matrices for . Specif-

ically, denotes the weight matrix for linear trans-

formation, and denotes the scaling factor for com-

① Data Processing

② Model Training ③ Assert Statement Generation

Fig.3. Overview framework of SAGA.

142 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

puting scaled dot-product attention.

The decoder in SAGA is a Transformer-based de-

coder that generates one new token at a time until a

special stop token is reached. The decoder is similar

in structure to the encoder except for the usage of the

mask mechanism in multi-head attention, and the

mask mechanism forces to attend only to past tokens

and avoids distraction and information leakage of the

subsequent tokens in training. Followed by the

masked multi-head attention layer is another multi-

head attention that attends to both the past tokens

and the feature representations learned by the en-

coder. Finally, the output of the final decoder layer is

fed into a softmax layer to map target token scores

into target token probabilities.

3.2 Data Processing

At this stage, SAGA prepares the collected source

code and summarization in such a manner that it can

/∗

<AssertPlaceHolder> ConsolidatedSource
Sequence

< BOS >

TargetSequence

be directly fed into the encoder-decoder model. SAGA

first generates consolidated input for the CAPS

dataset, which combines the three pieces of developer-

written content into one sequence isolated by special

tokens. The consolidation of the CAPS dataset con-

sists of three major steps: 1) ignoring the comments,

new line characters, and redundant whitespaces with-

in the body of test and focal methods, and removing

the comment-related symbols (e.g., “ ”) within the

summarization; 2) appending the summarization, sig-

nature, and full body of the focal method to the end of

the test method; 3) replacing the entire assert state-

ment from the test method with the unique token

“ ”. The

 in Fig.4 shows an example of CAPS input

where tokens are separated by single whitespace. The

input sequence involves the test prefix, focal method,

and summarization, which are isolated by different

abbreviate tokens (e.g., “ ” denotes the begin-

ning of summarization). And the in

CAPS Input

Data Processing

Pre-Trained Encoder-Decoder Model

@Test

Fig.4. Pipeline of SAGA.

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 143

Fig.4 is a single assert statement that the decoder is

expected to generate. Then, SAGA uses the sentence-

piece tokenizer[30] to divide every word token into a

sequence of sub-word tokens for alleviating the open-

vocabulary problem[31]. In this manner, the tokens

with low frequency can be synthesized more easily,

thus making the assert statement generation task

more tractable.

3.3 Model Training

As illustrated in Fig.4, the training pipeline of

SAGA takes the generated CAPS dataset as input

and works on three different pieces of developer-writ-

ten content: 1) the test method that contains infor-

mation on how to test the focal method; 2) the full

context of the focal method; 3) and the summariza-

tion of the focal method written in NL. We begin

with the pre-trained model serving as the reference

architecture for the proposed SAGA framework. First-

ly, the previous data processing step tokenizes the in-

put CAPS dataset. We then perform the fine-tuning

on the task of assert statement generation. At the fi-

nal step, the encoder in SAGA encodes the tokenized

source sequence, and the decoder sequentially pre-

dicts the assert statement.

3.3.1 Pre-Training

Based on the empirical findings from existing

datasets, we believe that developer-written summa-

rization can be beneficial to models specialized in the

assert statement generation task. Moreover, com-

pared with the other two code implementations, we

consider the summarization as a different modality. In

order to learn generic representations for NL and PL,

we leverage the state-of-the-art model CodeT5 as the

starting point to train SAGA. That is, we can take

the learned parameters of a pre-trained model and use

them as initialization for SAGA. The goal of SAGA is

to automatically synthesize an assert statement for

the given test prefix, focal method, and summariza-

tion. We formulate this task as a text-to-text predic-

tion, which is consistent with CodeT5's design. Thus,

by using the learned parameters pre-trained on the

colossal clean crawled corpus, SAGA is able to learn

many generic patterns that can be directly applied to

the task of generating assert statements. In addition,

we isolate different input modalities with special to-

kens (as described in Subsection 3.2), which would

further benefit SAGA in using CodeT5 to learn the

relationship between NL and PL.

3.3.2 Fine-Tuning

D D

Di = {c, a}
c = (t, f, s) t

f s

a

c → a

p(a|c)

At this stage, we fine-tune the pre-trained model

for the task of generating assert statements. The fine-

tuning techniques can optimize the pre-trained pa-

rameters to make them more suitable for the down-

stream tasks. Specifically, we represent the assert

statement generation task in a “text-to-text” format,

where the input is a consolidated sequence of test pre-

fix, focal method, and summarization, and the out-

put is the expected assert statement. The fine-tuning

process is performed using the training corpus of

CAPS dataset , and each instance within can be

formally represented as a pair , where

 comprises the test prefix , the corre-

sponding focal method , and the summarization ,

and denotes the developer-written assert statement.

The fine-tuning objective is to minimize the cross-en-

tropy loss by learning the mapping as a condi-

tional probability .

3.4 Assert Statement Generation

To sum up, the encoder learns representations of

every sub-word token in the input source sequence us-

ing all input instances in the training corpus, essen-

tially encoding the whole input information in every

input sub-word token representation. The self-atten-

tion mechanism allows the decoder to attend to all

previously generated sub-word tokens and decide on

generating the correct token at the correct place. Dur-

ing inference, SAGA uses beam search to generate the

assert statement sequentially. Once the decoder

reaches the stop token, SAGA outputs the top-ranked

sequence in the beam search. SAGA then detokenizes

the sequence of sub-word tokens to restore the origi-

nal sequence. Finally, we compare the detokenized se-

quence with the target sequence to determine whether

the SAGA-generated assert statement exactly match-

es the developer-written one.

4 Experimental Setup

4.1 Experimental Subjects

During the dataset construction process, our goal

is to map the test methods to their corresponding fo-

144 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

cal methods. For this task, we first mine a 100k sam-

ple of public GitHub repositories written in the Java

programming language, which has been used in the

previous studies[8, 11]. Next, we parse the selected

projects and extract all the declared methods with

their associated metadata (e.g., annotations, signa-

tures, and variables) using Spoon[32]. The parsed code

will be utilized for identifying focal methods as well as

augmenting the focal methods with summarization.

Finally, for a particular test method, we map it to the

corresponding focal method for deriving the CAPS

dataset.

4.1.1 Test and Focal Method Mapping

In this stage, we establish the test-to-code trace-

ability links (i.e., mapping the corresponding focal

method to each test method) for the extracted meth-

ods. To this aim, we introduce the following hybrid

heuristic strategy in this paper.

�Test�

● Naming Convention (NC). Considering the in-

tention behind NC, test method names are often simi-

lar to those of the corresponding focal methods.

Therefore, the first heuristic strategy attempts to

match the test method with a focal method having a

name that matches, after removing the possible

 prefix or suffix. If the names match exactly,

the focal method is correctly identified for the test

method.

● Static Call Graph (SCG). The NC technique

would fail to identify the focal method when no test

method name contains its name. To address the

drawback of NC, we then use SCG to aid the map-

ping process if the previous heuristic strategy does not

identify any focal method. The second heuristic strat-

egy hypothesizes that we can derive the focal method

by inspecting method invocations in the test methods.

To identify the focal method of a particular test

method, we begin by collecting all production classes

that are the destination of an outgoing method invo-

cation within the test method and selecting the most

referenced production class as the focal class. Then,

we compute the intersection between the list of

method invocations within the test method and the

list of methods declared within the focal class by

querying the complete signature string. If the inter-

section is a unique method, then we select the method

as the focal method.

4.1.2 CAPS Dataset Construction

CAPSA CAPSM

CAPSA
CAPSM

CAPSA CAPSM

After identifying the corresponding focal methods

for all the test methods, we further filter the focal

methods without developer-written summarization to

construct the CAPS dataset. Specifically, CAPS is a

corpus of test prefixes, corresponding focal methods

with summarization, and assert statements. Addition-

ally, due to the possibility of cloning methods across

different GitHub repositories, we further exclude du-

plicated instances to prevent the same instance ap-

pearing in both the training and testing sets. After

preprocessing, we create two adapted CAPS datasets

(referred to as and) by modifying

ATLAS[8] and Method2Test[11], respectively. As men-

tioned in the previous study[8], the original ATLAS

dataset is constructed in a simplified way that ex-

cludes some challenging cases (i.e., the assert state-

ments that contain tokens absent from the input con-

tents) for generation. In this paper, and

 include the cases of assert statements with

unknown tokens. and contain a total

of 77 931 and 117 709 unique instances, respectively.

Next, we further split each dataset into training, vali-

dation, and testing sets by the ratio of 8:1:1. The

dataset split is performed carefully by taking into ac-

count possible data leakage. To be specific, any two

instances belonging to the same GitHub repository

cannot be put in two different sets (e.g., one in train-

ing and the other in testing). In other words, all the

instances belonging to the same GitHub repository

will be put in the same set. Table 1 reports the de-

tailed statistics of the two datasets, where MaxL,

MinL, and AvgL denote the maximum length, the

minimum length, and the average length, respectively.

4.2 Experimental Design

We conduct experiments on the two adapted

CAPS datasets to evaluate the effectiveness of SAGA.

Table 1. Detailed Statistics of Two Adapted CAPS Datasets

Dataset Split
(# of Instances)

Source Code Length
(# of Tokens)

Summarization Length
(# of Tokens)

Assert Statement Length
(# of Tokens)

Training Validation Testing MaxL MinL AvgL MaxL MinL AvgL MaxL MinL AvgL

CAPSA 62 386 7 756 7 789 984 11 131.8 659 3 31.0 747 4 12.8

CAPSM 93 246 11 492 12 971 982 16 182.5 726 3 36.2 529 3 13.1

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 145

In this paper, we compare SAGA with the following

five baselines that are related to our work.

● TestNMT[7]: an experimental approach to test

generation using an RNN-based NMT model, allow-

ing a developer to generate an approximate test for a

given function.

● ATLAS[8]: a DL-based model that uses the RNN

encoder-decoder with the copy-attention mechanism

to generate assert statements.

● T5[26]: a pre-trained model that is fine-tuned us-

ing the ATLAS dataset[8] for the assert statement

generation task.

● T5-Extension[27]: an extended version of the T5

model[26] paying particular attention at the role

played by pre-training and multi-task fine-tuning on

the model's performance.

● Integration[29]: an IR-based approach combined

with ATLAS to enable more powerful assert state-

ment generation.

OpenNMT-py

We initialize SAGA with the pre-trained CodeT5-

small checkpoint② from the Huggingface's website.

We adopt the same architecture as the T5[10] model,

consisting of 8-headed attention and six layers in both

the encoder and decoder. We set the maximum source

and target sequence lengths both to 512 and the

batch size to 256. For the implementation of base-

lines, we reimplement TestNMT and ATLAS with the

same architectures and hyper-parameters described in

the relevant papers using [33]. As for T5

and T5-Extension, we use the publicly released check-

points. As for integration, we download the available

source code provided by the authors. To make a fair

comparison, we uniformly use the training set of the

CAPS dataset to train or fine-tune baselines and

SAGA on the task of assert statement generation, re-

spectively. During the training or fine-tuning step, we

train each corresponding model for a maximum of 100

epochs. After each epoch, we compute the loss on the

validation set and save the model with the minimum

validation loss. To avoid the over-fitting issue, we

perform early stopping if the validation performance

does not improve for five consecutive epochs. During

testing, we use a beam search and set the beam size

to five. Finally, we evaluate the trained model on the

testing set and report the comparison results in this

paper. We conduct experiments on four NVIDIA

GTX 1080Ti GPUs.

4.3 Experimental Metrics

To quantitatively compare the performance of

SAGA with the baselines, we choose the following

three widely used metrics[7, 8, 29].

● Accuracy. This paper uses the top-1 accuracy to

measure the performance of the proposed approaches.

When the generated assert statement matches exact-

ly with the developer-written assert statement, it is

correct. Otherwise, it is incorrect.

● BLEU. The BLEU (Bilingual Evaluation Under-

study)[34] score is a variant of the precision metric

widely used to assess the quality of NMT systems.

This metric can calculate the similarity by comput-

ing the n-gram precision of a candidate sentence to

the reference sentence, with a penalty for the overly

short length. In this paper, we report the BLEU-4

score.

● ROUGE. ROUGE (Recall-Oriented Under-

study for Gisting Evaluation)[35] formally calculates

an n-gram recall between a candidate sentence and a

set of reference sentences. In this paper, we present

the value of ROUGE-L, which computes the F-mea-

sure based on the longest common subsequence.

5 Results and Analysis

In this section, we present the experimental re-

sults for measuring the performance of SAGA and an-

swering the following three research questions (RQs).

● RQ1. How does SAGA perform compared with

the state-of-the-art baselines?

● RQ2. What is the effectiveness of the developer-

written summarization on the task of assert state-

ment generation?

● RQ3. What is the quality of the generated in-

correct assert statements?

5.1 Answering RQ1

To answer this question, we compare SAGA with

five baselines on two adapted datasets. We remove

the summarization contents from the CAPS corpus

when training the baselines. In particular, we observe

that each class name within the fine-tuning datasets

of T5 and T5-Extension is preceded by its complete

package name (e.g., the String class is tokenized as ja-

va. lang. String). Thus, we also apply such a modifi-

146 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

②https://huggingface.co/Salesforce/codet5-small, Jan. 2025.

https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-small

cation to the two datasets when training the two

baselines.

5.1.1 Experimental Metrics Evaluation

Table 2 shows the model performance on the two

datasets in terms of the three evaluation metrics. The

best result for each metric is marked in bold. As

shown in Table 2, SAGA substantially outperforms

the five baselines on both datasets. Specifically,

SAGA achieves an accuracy of 53.1% and 19.8% on

the two datasets, respectively, which achieves a rela-

tive improvement of 42.7% and 40.4% over the best

baseline model integration, respectively. In terms of

the BLEU-4 metric, SAGA obtains 75.56 and 39.17

scores on the two datasets, respectively, which is

15.83 and 16.39 points higher than integration, re-

spectively. In terms of the ROUGE-L metric, SAGA

obtains 85.96 and 65.15 scores on the two datasets,

respectively, which is 6.45 and 2.89 points higher than

integration, respectively.

In addition, we observe that T5 yields poorer per-

formance on the two datasets compared with the re-

sults in the original paper[26]. Since we use the public

source code provided by the authors and follow the

same training strategy as in the original paper, we

further look into the datasets and draw the following

CAPSA CAPSM

CAPSA
CAPSM

possible reasons. 1) On and , the aver-

age length of the assert statements (after adding the

complete package name to the front of each declared

class) in the testing set is 21.69 and 22.32 tokens, re-

spectively, while the average length is 17.25 tokens in

T5's testing set. Thus, the need for generating longer

assert statements may be a reason for decreasing the

model performance. Furthermore, because the com-

plete package name list typically consists of fixed pat-

terns, T5 achieves a comparable BLEU-4 score while

maintaining low accuracy. 2) Since and

 contain the challenging cases of assert state-

ments with unknown tokens, however, T5 is fine-

tuned on the dataset that excludes such challenging

cases. Therefore, T5 may be less capable of dealing

with open-vocabulary issues. 3) After analyzing the

vocabulary of T5 dataset, we discover that all upper-

case letters are replaced with lowercase letters. Such

modifications would negatively change the tokens

with different semantics into the same and reduce the

difficulty of this task as well.

5.1.2 Assert Statement Types Evaluation

In addition, we also analyze the types of assert

statements that are correctly generated by each mod-

el. Table 3 presents the accuracy results on assert

Table 2. Comparison Results of the Three Metrics for RQ1

Model CAPSA CAPSM
Accuracy (%) BLEU-4 ROUGE-L Accuracy (%) BLEU-4 ROUGE-L

TestNMT 9.5 21.74 60.95 1.1 2.87 46.04

ATLAS 18.0 28.70 70.01 7.6 14.22 60.36

T5 9.1 26.44 43.94 2.1 20.31 49.74

T5-Extension 23.8 33.02 72.15 7.6 21.86 57.85

Integration 37.2 59.73 79.51 14.1 22.78 62.26

SAGA 53.1 75.56 85.96 19.8 39.17 65.15

Table 3. Detailed Statistics of Each Assert Type

Dataset Model True False Null NotNull Equals Same ArrayEquals That Other

CAPSA TestNMT 148(12.8%) 12(2.9%) 64(17.4%) 83(21.7%) 377(9.8%) 0(0.0%) 18(12.5%) 38(2.7%) –

ATLAS 207(17.9%) 55(13.1%) 105(28.6%) 198(51.8%) 687(17.9%) 4(3.8%) 36(25.0%) 107(7.7%) –

T5 146(12.6%) 15(3.6%) 58(15.8%) 75(19.6%) 329(8.6%) 0(0.0%) 9(6.3%) 80(5.8%) –

T5-Extension 342(29.6%) 76(18.1%) 112(30.5%) 146(38.2%) 903(23.6%) 9(8.6%) 37(25.7%) 227(16.3%) –

Integration 469(40.6%) 116(27.7%) 163(44.4%) 221(57.9%) 1 404(36.7%) 38(36.2%) 60(41.7%) 424(30.5%) –

SAGA 663(57.4%) 221(52.7%) 218(59.4%) 266(69.6%) 1 935(50.5%) 54(51.4%) 72(50.0%) 704(50.7%) –

CAPSM TestNMT 0(0.0%) 1(0.2%) 0(0.0%) 1(0.2%) 136(2.4%) 0(0.0%) 0(0.0%) 0(0.0%) 11(1.6%)

ATLAS 77(5.0%) 47(8.8%) 123(24.9%) 181(28.4%) 349(6.2%) 0(0.0%) 24(8.6%) 63(2.1%) 120(17.8%)

T5 45(2.9%) 5(1.0%) 16(3.2%) 3(0.5%) 130(2.3%) 0(0.0%) 10(3.6%) 22(0.7%) 36(5.3%)

T5-Extension 140(9.0%) 57(10.7%) 107(21.7%) 68(10.7%) 462(8.2%) 0(0.0%) 33(11.8%) 50(1.6%) 67(9.9%)

Integration 277(17.8%) 57(10.7%) 163(33.1%) 164(25.7%) 689(12.3%) 15(12.0%) 77(27.6%) 258(8.4%) 125(18.5%)

SAGA 364(23.5%) 153(28.8%) 191(38.7%) 165(25.9%) 1 093(19.5%) 16(12.8%) 96(34.4%) 350(11.4%) 136(20.1%)

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 147

assertNotEquals assertNotSame
assertThrows fail
CAPSA

assertThat

assertThat

CAPSA
CAPSM

statements of different types (with the number of ex-

act matches and their percentage). Note that the last

column indicates the results of four other assert state-

ment types (i.e., , ,

, and) that are not included in the

 dataset. As it can be seen in Table 3, SAGA

is able to consistently outperform the baselines in all

the types on both datasets. The distribution of each

type correctly generated by SAGA is relatively even,

which mitigates the possible threat that SAGA is

only capable of generating a specific type of assert

statement. Watson et al.[8] hypothesize that the

 statements are more difficult to generate

due to the nature of the assert itself. Despite the com-

plexities of statements, as the developer-

written summarization often contains explicit hints

about how to understand the intended functionality

of focal method, SAGA is able to achieve high predic-

tion accuracy of 50.7% on the dataset. As for

the challenging dataset , SAGA can still cor-

rectly predict 11.4% of the assert statements in the

testing set.

5.1.3 Length Distribution Evaluation of Correct

Assert Statement

We further investigate the ability of each model

to correctly predict long assert statements by analyz-

ing the length distribution of generated assert state-

ments. Fig.5 shows the length distribution of correct

assert statements generated by each model on the two

datasets, where the X-axis represents the length of as-

sert statements (i.e., the number of tokens within

each assert statement) and the Y-axis represents the

number of correct assert statements for each corre-

sponding scale on the X-axis. We exclude the two

models (T5 and T5-Extension) with different assert

statement lengths in this comparison experiment. As

shown in Fig.5, it is notable that SAGA tends to be

superior to all the baselines in generating both short

and long assert statements.

MeanS MeanL

Table 4 presents the average lengths of short (de-

noted as) and long (denoted as) assert

statements generated by each model together with the

corresponding accuracy, and the median values of all

correct assert statements. We regard the assert state-

ments with less than 15 tokens as short in this paper.

The statistic results shown in Table 4 validate our ob-

servation that SAGA is capable of correctly generat-

ing both short and long assert statements on the two

datasets. In addition, the IR-based model is able to

retrieve long sequences from the training corpus, and

integration thus achieves a comparable result against

SAGA.

5.1.4 Answer to RQ1

In summary, the proposed SAGA framework sig-

4 6 8 10 12 14 16 18 20 22 24

SAGA
IR
ATLAS
TextNMT

Length of Assert Statements

N
u
m

b
e
r

o
f
C

o
rr

e
c
t

A
ss

e
rt

 S
ta

te
m

e
n
ts

SAGA
IR
ATLAS
TextNMT

3 5 7 9 11 13 15 17 19 21 23 25

Length of Assert Statements

103

102

101

100

N
u
m

b
e
r

o
f
C

o
rr

e
c
t

A
ss

e
rt

 S
ta

te
m

e
n
ts

103

102

101

100

(b)(a)

CAPSA CAPSMFig.5. Length distribution of correct assert statements. (a) . (b) .

Table 4. Statistic Results of the Lengths of the Generated Correct Assert Statements

Model CAPSA CAPSM
MeanS MeanL Median MeanS MeanL Median

TestNMT 6.75(11.2%) 16.64(3.4%) 6 5.75(1.6%) 0(0%) 6

ATLAS 7.14(22.3%) 17.28(5.2%) 6 5.44(10.7%) 0(0%) 4

Integration 8.56(40.3%) 18.05(27.2%) 10 7.32(17.2%) 17.95(7.3%) 8

SAGA 8.79(58.3%) 18.18(38.0%) 10 7.43(24.7%) 18.01(9.1%) 8

148 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

nificantly outperforms the baselines in terms of all the

experimental metrics. Our observations indicate that

SAGA is capable of generating both long assert state-

ments and the challenging cases with higher accuracy

against the baselines.

5.2 Answering RQ2

To answer this question, we evaluate the effective-

ness of developer-written summarization by conduct-

ing ablation experiments on each model (i.e., training

the corresponding model with summarization or not)

separately. For a fair comparison, the training strate-

gy and the hyper-parameter settings are consistent

with those described in Subsection 4.2.

5.2.1 Ablation Study

Table 5 presents the comparison results of the ab-

lation study. Each model comprises two lines of ex-

perimental results, in which the first line shows the

results of the model that is trained without using the

developer-written summarization and the second line

shows the results of using such additional informa-

tion. As shown in Table 5, we can observe that pro-

viding the summarization as complementary informa-

tion contributes to improving the performance of all

the models.

T1 T2

We also statistically compare the performance of

two different treatments in terms of accuracy for each

corresponding model using the McNemar's test[36],

which is a non-parametric statistical test suitable to

the paired dichotomous data summarized in a contin-

gency table[37]. To compute the test results for two

treatments (i.e., with summarization) and (i.e.,

T1 T2

T1

T2

T1 T2

mcnemar mlxtend

oddsratio

without summarization), we firstly construct a contin-

gency table by counting the number of cases in which

1) both and generate the correct assert state-

ment, 2) only generates the correct assert state-

ment, 3) only generates the correct assert state-

ment, and 4) neither nor generates the correct

assert statement. Then, the McNemar's test is ap-

plied to the constructed contingency table to check

the null hypothesis stating that the difference be-

tween two treatments is insignificant. If the reported

p-value is less than the significant level 0.05, the null

hypothesis will be rejected, and it is drawn that the

disparity between treatments is significant and not

random. The implementation of the McNemar's test

is available at the function of the

Python library[38]. To further complement the results

of McNemar's test, we use the Python li-

brary③ to compute the odd ratio (OR) for measuring

the effect size. The OR value greater than 1 means

the usage of augmented information has a positive re-

lationship with the generation of meaningful assert

statements (i.e., more assert statements could be cor-

rectly generated with the aid of providing additional

summarization).

Table 6 reports the results of McNemar's test to

determine if there are statistical differences when

training models with the two different treatments.

The following results are the observations from Table 6.

T1

<

T1 T2

● As for the five DL-based models (TestNMT,

ATLAS, T5, T5-Extension, and SAGA), leads to

significantly better results (p-value 0.05) with the

values of OR ranging from 1.03 to 1.43. This means

that chances of generating a correct assert statement

using are 3% to 43% higher when compared with .

Table 5. Comparison Results of the Two Metrics for RQ2

Model CAPSA CAPSM
Accuracy (%) BLEU-4 ROUGE-L Accuracy (%) BLEU-4 ROUGE-L

TestNMT w/o S 9.5 21.74 60.95 1.1 2.87 46.04

w/ S 12.6 25.91 61.52 4.9 12.13 52.12

ATLAS w/o S 18.0 28.70 70.01 7.6 14.22 60.36

w/ S 23.8 39.89 74.74 9.9 17.94 61.90

T5 w/o S 9.1 26.44 43.94 2.1 20.31 49.74

w/ S 9.8 27.52 44.20 3.2 23.24 52.45

T5-Extension w/o S 23.8 33.02 72.15 7.6 21.86 57.85

w/ S 24.7 41.45 73.36 8.1 23.61 59.56

Integration w/o S 37.2 59.73 79.51 14.1 22.78 62.26

w/ S 37.4 60.92 80.13 14.1 22.94 62.56

SAGA w/o S 52.7 75.28 85.53 19.3 38.10 64.69

w/ S 53.1 75.56 85.96 19.8 39.17 65.15

Note: ``w/o S'' denotes without summarization, and ``w/ S'' denotes with summarization.

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 149

③https://github.com/JiguangPeng/odds_ratio, Jan. 2025.

https://github.com/JiguangPeng/odds_ratio
https://github.com/JiguangPeng/odds_ratio
https://github.com/JiguangPeng/odds_ratio

T1 T2

T1

● As for the IR -based model integration, we can

see that there is no statistically significant difference

between and (p-value is greater than 0.05).

Nevertheless, the value of OR (i.e., 1.01) indicates

that still improves the performance of integration

to some extent.

● In view of the inconsistent results described

above, we give the following possible explanations.

1) Intuitively, the DL-based models are able to direct-

ly learn definitive information from the provided sum-

marization to aid the assert statement generation

task. 2) As the key technique of integration is the IR-

based assertion retrieval, which is based on the Jac-

card similarity between the corresponding and given

focal-test written in PL, solely providing additional

summarization written in NL is difficult to continue

to increase the performance improvements during the

retrieval process.

Additionally, we analyze the uniqueness of cor-

rect assert statements generated by each model. Fig.6

shows the overlapping between the correct assert

statements generated by using input with summariza-

tion or not among each model evaluated on the two

datasets. As shown in Fig.6, we can find that the

summarization-guided models (colored with light

green) tend to generate more unique correct assert

statements that fail to be generated by models with-

CAPSM

out using summarization. For example, 587 correct

assert statements are uniquely generated by SAGA on

, while 520 correct assert statements are

uniquely generated by SAGA without using summa-

rization. By further investigating the incorrect assert

statements generated by SAGA, we observe the exis-

tence of equivalent cases that are not exactly matched

with the developer-written ones but semantically

equivalent to the developer's intent. We will discuss

these cases in Subsection 5.3.1.

5.2.2 Case Study

resultSet

getConcurrency
ResultSet

resultSet

stmt

hostname RemoteMachine

To better understand the effectiveness of using

summarization as complimentary information, we

present two cases in Fig.7 to demonstrate the ability

of summarization to guide the generation of assert

statements. As a case study, we take the SAGA mod-

el as an example to show the difference between as-

sert statements generated with or without summariza-

tion. Fig.7(a) shows an example of summarization ex-

plicitly providing the related token (i.e.,),

which is missing from the test prefix and focal

method. Fig.8 visualizes the attention weights for the

encoder and decoder while generating the expected as-

sert statement. We can observe that SAGA learns the

relationship that function belongs to

class from summarization and thus cor-

rectly predicts the token as the parameter

for the assert statement. Nevertheless, SAGA pre-

dicts an irrelevant token when the summariza-

tion is not used. Fig.7(b) depicts an example of sum-

marization used to convey the intended functionality

of the focal method. From the content of the summa-

rization, we can clearly understand that the focal

method completes the functionality of returning the

 of . As shown in Fig.9,

Table 6. McNemar's Test (p-Value and OR) in Terms of the
Accuracy Metric for RQ2

Model CAPSA CAPSM

p-Value OR p-Value OR

TestNMT < 0.05 1.38 < 0.05 1.21

ATLAS < 0.05 1.43 < 0.05 1.36

T5 < 0.05 1.08 < 0.05 1.10

T5-Extension < 0.05 1.06 < 0.05 1.07

Integration 0.33 1.01 0.61 1.01

SAGA < 0.05 1.03 < 0.05 1.04

w/ S

w/o S

CAPSA

CAPSM

SAGA Integration TestNMTATLAS

1 237 162 620

555 185 428 3 749
341 397

1 981
520 587

2 653
242261

1 759 66

73

642 342640 511

23 126

T5

580 132
180

269 116
151

T5-Extension

1 519 333

408

673 311
374

Fig.6. Overlapping of the correct assert statements.

150 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

machine mac
SAGA indeed learns the relationship that the host-

name of is `` ''. Likewise, SAGA fails to

predict the token if the summarization is not avail-

able. These results reveal the effectiveness of our pro-

posed approach for assert statement generation.

5.2.3 Answer to RQ2

To sum up, providing the developer-written sum-

marization can improve the performance of the assert

statement generation task. Specifically, the summa-

rization contents may explicitly contain the related

tokens directly appearing as parameters in the assert

statements or convey the intended program behavior

via detailed functionality descriptions of the focal

methods to assist in the generation of correct assert

statements.

5.3 Answering RQ3

To answer this research question, we inspect the

assert statements that are not exactly matched with

the ground truth. The evaluation is split into two as-

pects: 1) discussing the semantically equivalent exam-

ples in the incorrect assert statements generated by

SAGA; 2) calculating the edit distance of incorrect as-

testHostnameGetter () { RemoteMachine machine = new

RemoteMachine ("mac", 10) ; "<AssertPlaceHolder>" ; }

Developer-Written

Assert Statement

SAGA

assertEquals ("mac", machine. getHostname ())

String getHostname () { return hostname ; }

Getter method of the hostname.

@return hostname of RemoteMachine.

Test Prefix

Focal Method

Summarization

w/ S

w/o S

Developer-Written

Assert Statement

SAGA

Test Prefix

Focal Method

Summarization

w/ S

w/o S
assertEquals ("mac", machine. getHostname ())

assertEquals ("192.168.0.1", machine. getHostname ())

shouldCallConcurrency () throws SQLException

{ "<AssertPlaceHolder>" ; }

assertThat (resultSet. getConcurrency (), is (0))

getConcurrency () throws SQLException

{ notClosed () ; return 0 ; }

{@inheritDoc } @see

java.sql.ResultSet#getConcurrency()

assertThat (resultSet. getConcurrency (), is (0))

assertThat (stmt. getConcurrency (), is (0))

(b)(a)

CAPSA
CAPSM

Fig.7. Examples showing the effect of summarization in SAGA's performance. (a) Example from the dataset. (b) Example
from the dataset.

Fig.8. Visualization of attention weights for the example in Fig.7(a).

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 151

sert statements generated by SAGA.

5.3.1 Equivalence Evaluation

t.getCount() == 999

assertEquals(999, t.getCount())

In this subsection, we manually analyze the incor-

rect assert statements generated by SAGA and pre-

sent qualitative discussion. As shown in Fig.10, the list

of equivalent examples showcase some of the SAGA-

generated assert statements that do not exactly match

with the ground truth, but they are semantically

equivalent to the developer-written ones. For exam-

ple, the developer checks that is

true, while SAGA suggests an equivalent check with

. Similarly, SAGA

suggests to assert a null string by checking whether

the length of string is equal to 0, while the developer

assertEquals

assertThat

uses the `` '' string directly. In another instance,

SAGA suggests to use the statement

to judge the equivalence of two objects rather than

the statement. The last two instances

show that SAGA is able to successfully predict the

full assert statements except the given message

strings (one is different and the other is missing).

Given that the message strings do not provide crucial

logic checks in the test cases, these instances are still

valuable for the developers.

The existence of equivalence results highlights the

need for additional reasonable metrics beyond simple

accuracy, particularly, metrics that can recognize cas-

es where the generated assert statement is different

yet equivalent to the one written by developers, as

well as the non-equivalent ones that can also success-

Fig.9. Visualization of attention weights for the example in Fig.7(b).

152 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

fully pass the given unit test and cover the focal

method.

5.3.2 Edit Distance Evaluation

pyxDamerauLevenshtein

CAPSA CAPSM

This evaluation computes the absolute token-

based edit distance between the incorrect assert state-

ments and the manually written ground truth (i.e.,

the minimum number of operations required to trans-

form incorrect assert statements into correct assert

statements). The edit distance metric gives evidence

to how useful incorrect assert statements are to devel-

opers. Intuitively, the easier it is to transform an in-

correct assert statement into a correct assert state-

ment, the more useful the assert statement would be

for developers. This evaluation is conducted by using

the assert statements generated for RQ1. We com-

pute the Levenshtein distance between the model-gen-

erated and developer-written assert statement using

the library④. As is shown in

Table 7, the statistic results reveal that SAGA per-

forms the best in edit distance, with the five base-

lines trailing behind. Specifically, the number of as-

sert statements that SAGA cannot generate correctly

on and is 3 653 and 10 403, respec-

tively. When the edit distance is 1, there are 1 123

(30.7%) and 1 089 (10.5%) incorrect assert state-

ments that can be converted into correct assert state-

ments on the two datasets, respectively, while 1 968

(53.8%) and 2 776 (26.7%) assert statements have an

edit distance that no more than three tokens from the

correct assert statements. In summary, there is a con-

siderable amount of incorrect assert statements gener-

ated by SAGA that are similar to the developer-writ-

ten ground truth. Many incorrect results can be

turned into perfect predictions by modifying only one

token (e.g., related constant or the assert statement

type). Thus, these incorrect assert statements can al-

so be useful to aid the developers.

6 Threats to Validity

In this section, we illustrate the main threats to

the validity of our approach, which are listed as fol-

lows.

● External Threat. The quality of the datasets is

the principal threat to external validity in this paper.

We create the CAPS dataset by modifying two exist-

ing datasets[8, 11], which are all collected from open-

source GitHub repositories. During the construction

assertTrue(t.getCount() == 999)
assertEquals(999, t.getCount())

assertThat(formatter. format(DayOfWeek. WEDNESDAY). toString (), is ("Wed"))
assertEquals("Wed", formatter. format(DayOfWeek. WEDNESDAY). toString ())

assertEquals("", string)
assertEquals(0, string.length())

Equivalent Assert Statements

Ground Truth:
SAGA:

assertFalse("Run should be considered new", context. isNewRunQueuedUp ())
assertFalse("Run should NOT be considered new", context. isNewRunQueuedUp ())

Ground Truth:
SAGA:

Ground Truth:
SAGA:

Ground Truth:
SAGA:

Ground Truth:
SAGA:

assertEquals("Length of joined expressions is correct", totalLength, joined.length ())
assertEquals(totalLength, joined.length ())

Fig.10. Examples of equivalent cases generated by SAGA.

Table 7. Comparison Results of Edit Distance Analysis

Model CAPSA CAPSM
1 2 3 1 2 3

TestNMT 732(10.4%) 784(11.1%) 691(9.8%) 261(2.0%) 704(5.5%) 555(4.3%)

ATLAS 1 085(17.0%) 583(9.1%) 573(9.0%) 1 177(9.8%) 751(6.3%) 888(7.4%)

T5 712(10.1%) 183(2.6%) 59(0.8%) 157(1.3%) 254(2.0%) 204(1.6%)

T5-Extension 923(15.5%) 451(7.6%) 506(8.5%) 640(5.3%) 451(3.8%) 629(5.2%)

Integration 1 352(27.6%) 529(10.8%) 444(9.1%) 1 060(9.7%) 837(7.7%) 775(7.1%)

SAGA 1 123(30.7%) 490(13.4%) 355(9.7%) 1 089(10.5%) 893(8.6%) 794(7.6%)

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 153

④https://github.com/gfairchild/pyxDamerauLevenshtein, Jan. 2025.

https://github.com/gfairchild/pyxDamerauLevenshtein

process, we use some heuristic rules to identify the fo-

cal methods for a given test method. Although we did

a rigorous data processing, there may be still some

noise. In our future research, we will adopt more opti-

mal ways of establishing test-to-code traceability

links[39, 40] for identifying focal methods more precise.

SAGA is also limited by its dependency on the usage

of merely developer-written test cases for model train-

ing. In general, manually written test cases usually

have different characteristics against those generated

by automated test case generation tools[41]. As a fu-

ture direction, SAGA could be trained on an extend-

ed dataset consisting of test cases automatically gen-

erated by tools, which more closely fits the distribu-

tion of tool-generated testing set.

∼

● Internal Threat. It is widely known that DL-

based models are sensitive to hyper-parameters. Thus

using a sub-optimal hyper-parameter can pose an in-

ternal threat to the validity of SAGA. Due to the lim-

itation of computational resources, we cannot con-

duct a thorough exploration of optimal hyper-parame-

ters in this paper. Since Raffel et al.[10] have explored

effective settings of hyper-parameters through exten-

sive experiments in previous work, we use the exactly

same hyper-parameters described by their paper. We

acknowledge that there might be room for further im-

provement by additional tuning. It is noted that the

large-scale language models (e.g., Codex[42]) trained

for code completion are not included as baselines in

this paper, since SAGA has a much smaller model

size of 60M parameters than theirs of 12B (200x).

We will further conduct an empirical study on the ef-

fectiveness of these general-purpose models on the

task of assert statement generation as future work.

● Construct Threat. In this paper, the experimen-

tal metrics used to evaluate model performance are

referred to as the construct threat. We adopt three

metrics that have been used in previous studies[7, 8, 29].

Although these metrics do not represent human judg-

ment, they can be used to quickly and quantitatively

evaluate the model performance. In the future, we will

conduct more human evaluations of the models.

7 Conclusions

In this study, we proposed a novel deep learning

(DL)-based approach SAGA for assert statement gen-

eration. To accurately reflect the developer's intent,

we made the first attempt to leverage the summariza-

tion of the focal method as complementary informa-

tion. We then took the advantage of a state-of-the-art

encoder-decoder language model, Code T5, to auto-

matically generate meaningful assert statements. Em-

pirical results demonstrated that the developer-writ-

ten summarization can provide definitive information

for improving the performance of assert statement

generation, outperforming the state-of-the-art ap-

proaches in terms of all the experimental metrics.

In the future, we plan to use static analysis tools

to collect additional contextual information (e.g.,

global context at project-level) pertinent to the given

focal method, aiming to assist SAGA in generating

more precise assert statements by augmenting the fo-

cal context input. Furthermore, semi-supervised pre-

training on projects where SAGA will be used to in-

fer assert statements could help our proposed model

to familiarize with project-related knowledge. As dis-

cussed earlier, we foresee that such DL-based ap-

proaches could be used to support developers in writ-

ing unit test cases more efficiently in practice. In this

scenario, we consider integrating SAGA as an IDE

plugin, which can be regarded as a code completion

tool by automatically suggesting assert statements

while manually writing unit test cases.

Conflict of Interest Zhi Jin is an editorial

board member for Journal of Computer Science and

Technology and was not involved in the editorial re-

view of this article. All authors declare that there are

no other competing interests.

References

 Garousi V, Zhi J. A survey of software testing practices in

Canada. Journal of Systems and Software, 2013, 86(5):

1354–1376. DOI: 10.1016/j.jss.2012.12.051.

[1]

 Pacheco C, Ernst M D. Randoop: Feedback-directed ran-

dom testing for Java. In Proc. the 22nd ACM SIGPLAN

Conference on Object-Oriented Programming Systems

and Applications Companion, Oct. 2007, pp.815–816.

DOI: 10.1145/1297846.1297902.

[2]

 Pacheco C, Lahiri S K, Ernst M D, Ball T. Feedback-di-

rected random test generation. In Proc. the 29th Interna-

tional Conference on Software Engineering, May 2007,

pp.75–84. DOI: 10.1109/ICSE.2007.37.

[3]

 Fraser G, Arcuri A. EvoSuite: Automatic test suite gener-

ation for object-oriented software. In Proc. the 19th ACM

SIGSOFT Symposium and the 13th European Confer-

ence on Foundations of software engineering, Sept. 2011,

pp.416–419. DOI: 10.1145/2025113.2025179.

[4]

 Shamshiri S. Automated unit test generation for evolving[5]

154 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2025113.2025179

software. In Proc. the 10th Joint Meeting on Founda-

tions of Software Engineering, Aug. 30–Sept. 4, 2015,

pp.1038–1041. DOI: 10.1145/2786805.2803196.

 Almasi M M, Hemmati H, Fraser G, Arcuri A, Benefelds

J. An industrial evaluation of unit test generation: Find-

ing real faults in a financial application. In Proc. the 39th

IEEE/ACM International Conference on Software Engi-

neering: Software Engineering in Practice Track, May

2017, pp.263–272. DOI: 10.1109/ICSE-SEIP.2017.27.

[6]

 White R, Krinke J. TestNMT: Function-to-test neural

machine translation. In Proc. the 4th ACM SIGSOFT In-

ternational Workshop on NLP for Software Engineering,

Nov. 2018, pp.30–33. DOI: 10.1145/3283812.3283823.

[7]

 Watson C, Tufano M, Moran K, Bavota G, Poshyvanyk

D. On learning meaningful assert statements for unit test

cases. In Proc. the 42nd International Conference on Soft-

ware Engineering, Jul. 2020, pp.1398–1409. DOI: 10.1145/

3377811.3380429.

[8]

 Wang Y, Wang W, Joty S, Hoi S C H. CodeT5: Identifi-

er-aware unified pre-trained encoder-decoder models for

code understanding and generation. In Proc. the 2021

Conference on Empirical Methods in Natural Language

Processing, Nov. 2021, pp.8696–8708. DOI: 10.18653/v1/

2021.emnlp-main.685.

[9]

 Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Mate-

na M, Zhou Y, Li W, Liu P J. Exploring the limits of

transfer learning with a unified text-to-text transformer.

The Journal of Machine Learning Research, 2020, 21(1):

Article No. 140.

[10]

 Tufano M, Deng S K, Sundaresan N, Svyatkovskiy A.

Methods2Test: A dataset of focal methods mapped to test

cases. In Proc. the 19th International Conference on Min-

ing Software Repositories, May 2022, pp.299–303. DOI:

10.1145/3524842.3528009.

[11]

 Padhye R, Lemieux C, Sen K. JQF: Coverage-guided

property-based testing in Java. In Proc. the 28th ACM

SIGSOFT International Symposium on Software Testing

and Analysis, Jul. 2019, pp.398–401. DOI: 10.1145/

3293882.3339002.

[12]

 Gopinath R, Kampmann A, Havrikov N, Soremekun E O,

Zeller A. Abstracting failure-inducing inputs. In Proc. the

29th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, Jul. 2020, pp.237–248. DOI:

10.1145/3395363.3397349.

[13]

 Li X, Li W, Zhang Y, Zhang L. DeepFL: Integrating mul-

tiple fault diagnosis dimensions for deep fault localization.

In Proc. the 28th ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, Jul. 2019,

pp.169–180. DOI: 10.1145/3293882.3330574.

[14]

 Wang S, Liu T Y, Tan L. Automatically learning seman-

tic features for defect prediction. In Proc. the 38th Inter-

national Conference on Software Engineering, May 2016,

pp.297–308. DOI: 10.1145/2884781.2884804.

[15]

 Zhang Y, Jin D, Xing Y, Gong Y. Automated defect iden-

tification via path analysis-based features with transfer

learning. Journal of Systems and Software, 2020,

[16]

166:110585. DOI: 10.1016/j.jss.2020.110585.

 Zhao Y, Wang Y, Zhang Y, Zhang D, Gong Y, Jin D.

ST-TLF: Cross-version defect prediction framework based

transfer learning. Information and Software Technology,

2022, 149:106939. DOI: 10.1016/j.infsof.2022.106939.

[17]

 Xing Y, Qian X, Guan Y, Yang B, Zhang Y. Cross-

project defect prediction based on G-LSTM model. Pat-

tern Recognition Letters, 2022, 160: 50–57. DOI: 10.1016/

j.patrec.2022.04.039.

[18]

 Luo S, Xu H, Bi Y, Wang X, Zhou Y. Boosting symbolic

execution via constraint solving time prediction (experi-

ence paper). In Proc. the 30th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, Jul.

2021, pp.336–347. DOI: 10.1145/3460319.3464813.

[19]

 Pan C, Pradel M. Continuous test suite failure prediction.

In Proc. the 30th ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, Jul. 2021,

pp.553–565. DOI: 10.1145/3460319.3464840.

[20]

 Chen J, Bai Y, Hao D, Xiong Y, Zhang H, Xie B. Learn-

ing to prioritize test programs for compiler testing. In

Proc. the 39th International Conference on Software Engi-

neering, May 2017, pp.700–711. DOI: 10.1109/ICSE.2017.

70.

[21]

 Spieker H, Gotlieb A, Marijan D, Mossige M. Reinforce-

ment learning for automatic test case prioritization and

selection in continuous integration. In Proc. the 26th

ACM SIGSOFT International Symposium on Software

Testing and Analysis, Jul. 2017, pp.12–22. DOI: 10.1145/

3092703.3092709.

[22]

 Lutellier T, Pham H V, Pang L, Li Y, Wei M, Tan L. Co-

CoNut: Combining context-aware neural translation mod-

els using ensemble for program repair. In Proc. the 29th

ACM SIGSOFT International Symposium on Software

Testing and Analysis, Jul. 2020, pp.101–114. DOI: 10.

1145/3395363.3397369.

[23]

 Zhu Q, Sun Z, Xiao Y, Zhang W, Yuan K, Xiong Y,

Zhang L. A syntax-guided edit decoder for neural pro-

gram repair. In Proc. the 29th ACM Joint European Soft-

ware Engineering Conference and Symposium on the

Foundations of Software Engineering, Aug. 2021,

pp.341–353. DOI: 10.1145/3468264.3468544.

[24]

 Chen Z, Kommrusch S, Tufano M, Pouchet L N, Poshy-

vanyk D, Monperrus M. SequenceR: Sequence-to-se-

quence learning for end-to-end program repair. IEEE

Trans. Software Engineering, 2021, 47(9): 1943–1959.

DOI: 10.1109/TSE.2019.2940179.

[25]

 Mastropaolo A, Scalabrino S, Cooper N, Nader-Palacio D,

Poshyvanyk D, Oliveto R, Bavota G. Studying the usage

of text-to-text transfer transformer to support code-relat-

ed tasks. In Proc. the 43rd International Conference on

Software Engineering, May 2021, pp.336–347. DOI: 10.

1109/ICSE43902.2021.00041.

[26]

 Mastropaolo A, Cooper N, Nader Palacio D, Scalabrino S,

Poshyvanyk D, Oliveto R, Bavota G. Using transfer

learning for code-related tasks. IEEE Trans. Software En-

gineering, 2023, 49(4): 1580–1598. DOI: 10.1109/TSE.

[27]

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 155

https://doi.org/10.1145/2786805.2803196
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1145/3283812.3283823
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3524842.3528009
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1016/j.jss.2020.110585
https://doi.org/10.1016/j.infsof.2022.106939
https://doi.org/10.1016/j.patrec.2022.04.039
https://doi.org/10.1016/j.patrec.2022.04.039
https://doi.org/10.1145/3460319.3464813
https://doi.org/10.1145/3460319.3464840
https://doi.org/10.1109/ICSE.2017.70
https://doi.org/10.1109/ICSE.2017.70
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/TSE.2022.3183297

2022.3183297.

 Dinella E, Ryan G, Mytkowicz T, Lahiri S K. TOGA: A

neural method for test oracle generation. In Proc. the

44th International Conference on Software Engineering,

May 2022, pp.2130–2141. DOI: 10.1145/3510003.3510141.

[28]

 Yu H, Lou Y, Sun K, Ran D, Xie T, Hao D, Li Y, Li G,

Wang Q. Automated assertion generation via informa-

tion retrieval and its integration with deep learning. In

Proc. the 44th International Conference on Software Engi-

neering, May 2022, pp.163–174. DOI: 10.1145/3510003.

3510149.

[29]

 Kudo T, Richardson J. SentencePiece: A simple and lan-

guage independent subword tokenizer and detokenizer for

neural text processing. In Proc. the 2018 Conference on

Empirical Methods in Natural Language Processing, Nov.

2018, pp.66–71. DOI: 10.18653/v1/d18-2012.

[30]

 Gu J, Lu Z, Li H, Li V O K. Incorporating copying mech-

anism in sequence-to-sequence learning. In Proc. the 54th

Annual Meeting of the Association for Computational

Linguistics, Aug. 2016, pp.1634–1640. DOI: 10.18653/v1/

p16-1154.

[31]

 Pawlak R, Monperrus M, Petitprez N, Noguera C, Sein-

turier L. SPOON: A library for implementing analyses

and transformations of Java source code. Software: Prac-

tice and Experience, 2016, 46(9): 1155–1179. DOI: 10.

1002/spe.2346.

[32]

 Klein G, Kim Y, Deng Y, Senellart J, Rush A M. OpenN-

MT: Open-source toolkit for neural machine translation.

In Proc. the 2017 System Demonstrations, Jul. 2017,

pp.67–72. DOI: 10.18653/v1/P17-4012.

[33]

 Papineni K, Roukos S, Ward T, Zhu W J. BLEU: A

method for automatic evaluation of machine translation.

In Proc. the 40th Annual Meeting of the Association for

Computational Linguistics, Jul. 2002, pp.311–318. DOI:

10.3115/1073083.1073135.

[34]

 Lin C Y. ROUGE: A package for automatic evaluation of

summaries. In Proc. the 2004 Text Summarization

Branches Out, Jul. 2004, pp.74–81.

[35]

 McNemar Q. Note on the sampling error of the difference

between correlated proportions or percentages. Psychome-

trika, 1947, 12(2): 153–157. DOI: 10.1007/BF02295996.

[36]

 Mohammadi M, Atashin A A, Hofman W, Tan Y. Com-

parison of ontology alignment systems across single

matching task via the McNemar’s test. ACM Trans.

Knowledge Discovery from Data, 2018, 12(4): Article No.

51. DOI: 10.1145/3193573.

[37]

 Raschka S. MLxtend: Providing machine learning and da-

ta science utilities and extensions to Python’s scientific

computing stack. Journal of Open Source Software, 2018,

3(24): Article No. 638. DOI: 10.21105/joss.00638.

[38]

 Ghafari M, Ghezzi C, Rubinov K. Automatically identify-

ing focal methods under test in unit test cases. In Proc.

the 15th IEEE International Working Conference on

Source Code Analysis and Manipulation, Sept. 2015,

pp.61–70. DOI: 10.1109/SCAM.2015.7335402.

[39]

 White R, Krinke J, Tan R. Establishing multilevel test-[40]

to-code traceability links. In Proc. the 42nd International

Conference on Software Engineering, Jul. 2020,

pp.861–872. DOI: 10.1145/3377811.3380921.

 Panichella A, Panichella S, Fraser G, Sawant A A, Hel-

lendoorn V J. Revisiting test smells in automatically gen-

erated tests: Limitations, pitfalls, and opportunities. In

Proc. the 36th IEEE International Conference on Soft-

ware Maintenance and Evolution, Sept. 27–Oct. 3, 2020,

pp.523–533. DOI: 10.1109/ICSME46990.2020.00056.

[41]

 Chen M, Tworek J, Jun H et al. Evaluating large lan-

guage models trained on code. arXiv: 2107.03374, 2021.

https://arxiv.org/abs/2107.03374, Jan. 2025.

[42]

Yu-Wei Zhang received his Ph.D.

degree in computer science and tech-

nology from Beijing University of

Posts and Telecommunications, Bei-

jing, in 2021. He is currently a post-

doctoral research fellow in the Key

Laboratory of High Confidence Soft-

ware Technologies (Ministry of Education) at Peking

University, Beijing. His research interests lie in the in-

tersection of software engineering and artificial intelli-

gence, with a focus on intelligent software testing.

Zhi Jin received her Ph.D. degree

in computer science from National

University of Defense Technology,

Changsha, in 1992. She is currently a

professor in the School of Computer

Science at Peking University, Beijing,

and the deputy director of Key Labo-

ratory of High Confidence Software Technologies (Min-

istry of Education) at Peking University, Beijing. Her

research interests include software engineering, require-

ments engineering, knowledge engineering, and machine

learning.

Ze-Jun Wang received his B.S. de-

gree in artificial intelligence from

Peking University, Beijing, in 2021. He

is currently a Ph.D. candidate in the

School of Computer Science and the

Key Laboratory of High Confidence

Software Technologies (Ministry of

Education) at Peking University, Beijing. His research

interests include software engineering and deep learning.

156 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

https://doi.org/10.1109/TSE.2022.3183297
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510149
https://doi.org/10.1145/3510003.3510149
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.1002/spe.2346
https://doi.org/10.1002/spe.2346
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1007/BF02295996
https://doi.org/10.1145/3193573
https://doi.org/10.21105/joss.00638
https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1109/ICSME46990.2020.00056
https://arxiv.org/abs/2107.03374

Ying Xing received her Ph.D. de-

gree in computer science and technolo-

gy from Beijing University of Posts

and Telecommunications, Beijing, in

2014. She is currently an associate

professor in the School of Artificial In-

telligence at Beijing University of

Posts and Telecommunications, Beijing. Her research in-

terests include source code analysis, software reliability,

and intelligence software engineering.

Ge Li received his Ph.D. degree in

computer science from Peking Univer-

sity, Beijing, in 2006, and had been a

visiting associate professor at Artifi-

cial Intelligence Laboratory of Stan-

ford University in 2013–2014. He is

currently a full professor with tenure

in the School of Computer Science at Peking University,

Beijing. His current research mainly concerns applica-

tions of probabilistic methods for machine learning, in-

cluding program language process, natural language pro-

cess, and software engineering.

Yu-Wei Zhang et al.: SAGA: Summarization-Guided Assert Statement Generation 157

	1 Introduction
	2 Related Work
	3 SAGA
	3.1 Model Architecture
	3.2 Data Processing
	3.3 Model Training
	3.3.1 Pre-Training
	3.3.2 Fine-Tuning

	3.4 Assert Statement Generation

	4 Experimental Setup
	4.1 Experimental Subjects
	4.1.1 Test and Focal Method Mapping
	4.1.2 CAPS Dataset Construction

	4.2 Experimental Design
	4.3 Experimental Metrics

	5 Results and Analysis
	5.1 Answering RQ1
	5.1.1 Experimental Metrics Evaluation
	5.1.2 Assert Statement Types Evaluation
	5.1.3 Length Distribution Evaluation of Correct Assert Statement
	5.1.4 Answer to RQ1

	5.2 Answering RQ2
	5.2.1 Ablation Study
	5.2.2 Case Study
	5.2.3 Answer to RQ2

	5.3 Answering RQ3
	5.3.1 Equivalence Evaluation
	5.3.2 Edit Distance Evaluation

	6 Threats to Validity
	7 Conclusions
	Conflict of Interest
	References

