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Abstract  Generating meaningful assert statements is one of the key challenges in automated test case generation,
which requires understanding the intended functionality of the tested code. Recently, deep learning based models have
shown promise in improving the performance of assert statement generation. However, the existing models only rely on the
test prefixes along with their corresponding focal methods, yet ignore the developer-written summarization. Based on our
observations, the summarization contents usually express the intended program behavior or contain parameters that will
appear directly in the assert statement. Such information will help existing models address their current inability to accu-
rately predict assert statements. This paper presents a summarization-guided approach for automatically generating as-
sert statements. To derive generic representations for natural language (i.e., summarization) and programming language
(i-e., test prefixes and focal methods), we leverage a pre-trained language model as the reference architecture and fine-tune
it on the task of assert statement generation. To the best of our knowledge, the proposed approach makes the first at-
tempt to leverage the summarization of focal methods as the guidance for making the generated assert statements more ac-
curate. We demonstrate the effectiveness of our approach on two real-world datasets compared with state-of-the-art mod-
els.
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tion, several limitations have been highlighted by re-
cent work in industrial settingsP® 6. One major chal-

1 Introduction

Software testing has been widely recognized as lenge lies in generating meaningful assert statements.

playing a critical role in improving software reliabili-
ty during the software development life cycle
(SDLC)M. Effective unit testing is helpful to expose
potential software faults early in SDLC to prevent the
release of buggy software. However, writing high-qual-
ity unit test cases is a time-consuming and error-
prone task in practice. To mitigate the manual costs
of testing activities, extensive work has been devoted
to the automatic generation of umit test cases24l.
Even though these tools represent a notable achieve-
ment towards the goal of automated test case genera-

Recently, deep learning (DL) techniques have
been applied to automated assert statement genera-
tion[” 8. Such DL-based models, e.g., ATLAS (AuTo-
matic Learning of Assert Statements)®, take the test
prefixes (i.e., test methods without any assert state-
ments) along with corresponding focal methods (i.e.,
the basic units under test) as input. Specifically, these
models are trained with a large corpus of paired test
prefixes and focal methods, including method signa-
tures and bodies. By learning semantic representa-
tions of the encoded input sequences, the trained
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models have the ability to automatically generate as-
sert statements.

Nevertheless, generating meaningful assert state-
ments is a tricky problem that requires a complete
understanding of the intended functionality of the fo-
cal methods. The effectiveness of existing models is
still limited due to a lack of useful contextual infor-
mation (e.g., the summarization of focal methods). In
an in-depth investigation of the developer-written
summarization, we observe that some intent-related
parameters within the assert statements can be di-
rectly discovered in the summarization contents but
not in the source code implementations. Additionally,
developer-written summarization conveys important
information about the intended program behavior.

As shown in Fig.1, the statement (line 16) writ-
ten by developer asserts that the return value of func-
tion getTrueWindDirection is equal to 234.5 within
a positive delta 0.1. Specifically, the state-of-the-art
model ATLAS only relies on the source code imple-
mentations (lines 5-15) to generate the recommended
assert statement (line 17), and fails to predict the
delta value. However, in the above example, the sum-
marization of the focal method (lines 1-4) contains
the specific delta value 0.1 (underlined at line 3) in its
content. This indicates that the summarization may
have explicitly given the intent-related parameter if
such developer-written summarization content is

available.
Focal Method with Summarization
1 /**
2 * Returns the wind direction. degrees True,
Hinta 3 * to the nearest 0.1 degree. NaN if not available.
I 4 */
i 5  public double getTrueWindDirection() {
H 6 if (hasValue(WIND_DIRECTION_TRUE))
H 7 return getDoubleValue(WIND_DIRECTION_TRUE);
: 8 else
1 9 return Double.NaN;
| 10}
|
! Test Prefix
1
H 11 @Test
: 12 public void testSetTrueWindDirection() {
H 13 mwd.setTrueWindDirection(234.5);
: 14 "<AssertPlaceHolder>";
! 15 }
1
i Developer-Written Assert Statement
1
'---} 16 assertEquals(234.5, mwd.getTrueWindDirection(), 0.1)

ATLAS-Generated Assert Statement
17 assertEquals(234.5, mwd.getTrueWindDirection())

Fig.1. Example of developer-written assert statement contain-
ing parameter out of the code.

Considering another more complex real-world ex-
ample shown in Fig.2, the ATLAS-generated result
(line 30) correctly predicts the type of assert state-
ment, yet fails to capture the developer’s intent from
the content of the test prefix (lines 21-28) and focal
method (lines 6-20). In this example, the developer
asserts that the focal method identify0SXVersion
should return a more accurately identified version
number (i.e., “10.7.3”) of the operating system OS X
at the resultant state according to the input string
userAgent. Obviously, it is difficult for ATLAS to
generate such a semantically correct assert statement
without additional information pertaining to the in-
tended functionality of the focal method. Likewise,
the summarization written by the developer (lines
1-5) can be utilized to better understand the func-
tionality of the focal method and capture the develop-
er’s intent.

In summary, an effective approach for automated
assert statement generation should not simply rely on
the contents of source code to predict both the type
and the logical nature. Other contextual information
(e.g., summarization) can also be utilized to assist the
generation of correct assert statements. To that end,
we present SummArization-Guided Assert Statement
Generation Model (SAGA), to address the limita-
tions of existing neural generative approaches. The
proposed model takes information from two modali-
ties as input, which consists of the source code imple-
mentations (i.e., test prefix and focal method) writ-
ten in programming language (PL) and the summa-
rization contents written in natural language (NL). It
needs to learn semantic representations of both PL
and NL and correctly generate assert statements writ-
ten in PL. Aiming to derive generic representations
for NL and PL, we take advantage of the recently
proposed model CodeT59, a Text-To-Text Transfer
Transformer (T5)10 architecture based framework
that leverages the NL-PL pairs to learn a better
cross-modal alignment. We start with CodeTb5 to
train SAGA and then fine-tune it for the specialized
downstream task (i.e., assert statement generation).
In previous studies(” 8, the two code implementations
are fed together into the model as a unified code snip-
pet. Therefore, the model may have the burden of
identifying the location of different code implementa-
tions. In contrast, the contents of test prefix, focal
method, and summarization are isolated by special to-
kens in this paper and then fed to the model, which
would provide SAGA with more information about
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Focal Method with Summarization

1 Jox
2 * This method try to determine the version number of the operating system OS X.
3 * @param user agent string
4 * @return more accurately identified version number
5 */

6 static VersionNumber identifyOSXVersion(final String userAgent) {

7 VersionNumber version = VersionNumber.UNKNOWN;

8 final List<Pattern> patterns = new ArrayList<Pattern>();

9 patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((\\.\\d+)+)?);"));

10 patterns.add(Pattern.compile("Mac OS X\s?((\d+)((\\_\d+)+)?);"));

11 patterns.add(Pattern.compile("Mac OS X\\s?((\\d+)((\\_\\d+)+)?)\\)"));

12 for (final Pattern pattern : patterns) {

13 final Matcher m = pattern.matcher(userAgent);

14 if (m.find()) {

15 version = parseFirstVersionNumber(m.group(MAJOR_INDEX).replaceAll("_", "."));

16 break;

17 }

18 }

19 return version;

20 }

Test Prefix

21 @Test

22 public void identifyOSXVersion_versionWithUnderlineAndRoundBracket() {

23 final String userAgent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3)

24 AppleWebKit/534.55.3 (KHTML, like Gecko)

25 Version/5.1.5 Safari/534.55.3";

26 final VersionNumber v = VersionParser.identifyOSXVersion(userAgent);

27 "<AssertPlaceHolder>";

28 }

Developer-Written Assert Statement

29 assertThat(v.toVersionString()).isEqualTo("10.7.3")

ATLAS-Generated Assert Statement

30 assertThat(v, is(v))

Fig.2. Example of ATLAS-generated assert statement failing to capture the developer’s intent.

different modalities for better learning the relation-
ships between them. Our empirical investigations in-
dicate that providing the summarization as guidance
reinforces the performance of assert statement genera-
tion. By learning the semantic representations of NL
and PL, SAGA can capture definitive information
about relationships between the summarization con-
tents and the source code implementations, thus aid-
ing the generation of meaningful assert statements.
To evaluate the proposed approach, we adapt two
real-world datasets[® 11 to create our variant dataset
named CAPS (Code-Assert Pairs with Summariza-
tion). Original datasets consist of paired source code
(i.e., test cases mapped to corresponding focal meth-
ods) collected from large-scale open-source GitHub
projects. To construct our adapted datasets, we dis-
card the pairs for which we are not able to obtain the
summarization of focal methods. Experimental re-

sults on the modified datasets demonstrate that
SAGA is able to outperform the state-of-the-art ap-
proaches.

This paper makes the following contributions.

e We present the first attempt at leveraging the
developer-written summarization to guide the task of
assert statement generation.

e We construct adapted datasets for assert state-
ment generation that incorporate source code and
summarization, which are publicly available in our
online package®.

e We conduct an extensive evaluation on assert
statement generation and demonstrate the effective-
ness of using summarization for improving the model
performance.

The remainder of this paper is organized as fol-
lows. We describe the related work in Section 2. The
proposed approach is introduced in detail in Section

Ohttps://doi.org/10.5281/zenodo.7571911, Jan. 2025.
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3. We outline the experimental setup in Section 4 and
present the results in Section 5. We disclose the
threats to the validity of our approach in Section 6.
Finally, Section 7 draws conclusions and indicates fu-
ture directions.

2 Related Work

In recent years, there has been considerable inter-
est in the automatic generation of assert statements.
Numerous automated test generation tools have been
proposed to synthesize assert statements using their
own methods. EvoSuitel4l applies a novel hybrid ap-
proach that generates and optimizes the whole test
suites towards satisfying a coverage criterion. It uti-
lizes the system based on mutation and constraint
solving to generate appropriate assert statements.
Specifically, it introduces mutants into the system
and attempts to generate assert statements that are
capable of killing these mutants. Randoop® 3! is an-
other automated tool that generates assert state-
ments using feedback-directed random testing, a tech-
nique inspired by random testing that uses execution
feedback gathered from executing test inputs as they
are created to avoid generating redundant and illegal
inputs. Essentially, a list of contracts, or pieces of log-
ic that the code must follow, is used to guide the gen-
eration of assert statements. These contracts are very
similar to developer-written assert statements. How-
ever, the contracts only provide the logic. Randoop
creates a syntactically correct assert statement that
tests the developer’s provided logic pertaining to the
test method. JQF!2 combines fuzz testing and prop-
erty-based testing to generate test cases, and the de-
veloper needs to manually write the test input when
encountering an object as a test input.

With the advances of DL techniques, an increas-
ing number of studies have so far utilized powerful
DL models to tackle problems in the realm of soft-
ware testing, such as bug localization[!3, 14, defect pre-
dictionl!518] test case prioritization1922], and pro-
gram repair2323. Such neural techniques have also
shown promising results in automated assert state-
ment generation. One such approach is ATLASHI,
which utilizes the recurrent neural network (RNN) to
predict meaningful test oracles for given focal meth-
ods and test methods. Mastropaolo et al.26 investi-
gated the performance of the T5 architecture on code-
related tasks and found that the T5 model can be
successfully applied to the assert statement genera-
tion task. Specifically, they first pre-trained a T5

model on a large corpus consisting of English sen-
tences and source code, and then fine-tuned it on sev-
eral downstream tasks including assert statement gen-
eration. Mastropaolo et al.27 further analyzed the
benefits of pre-training and multi-task fine-tuning,
and showed that the improved T5 model substantial-
ly boosted the performance on generating meaningful
assert statements. Dinella et al.28] proposed an end-
to-end test generation approach TOGA that inte-
grates neural test oracle generation with EvoSuite for
bug detection, utilizing a Transformer-based model
without relying on the unit’s implementation. In con-
trast to DL-based approaches, Yu et al.29 leveraged
information retrieval (IR) techniques for generating
assert statements, which is a two-stage approach in-
cluding IR-based assert statement retrieval and adap-
tation. Furthermore, they introduced an integration
strategy by combining the IR-based approach with
ATLAS to improve its effectiveness.

Specifically, the aforementioned tools utilize hand-
crafted patterns or heuristics to infer assert state-
ments for the test units. Instead, SAGA aims to mim-
ic the behavior of developers when writing assert
statements by using a DL-based approach. Further-
more, existing neural models simply rely on the source
code implementations and lack the information of the
developer-written summarization. Thus, SAGA makes
the first attempt to leverage the summarization as
complimentary information to accurately reflect the
developer’s intent to benefit the assert statement gen-
eration task.

3 SAGA

As shown in Fig.3, the overall framework of
SAGA mainly consists of three stages: data process-
ing, model training, and assert statement generation.
In this section, we first present an overview of the
model architecture of SAGA and then detail each
component of the proposed approach.

3.1 Model Architecture

In this paper, we adopt a sequence-to-sequence
language model to learn semantic representations of
both PL and NL for the task of assert statement gen-
eration. The model consists of an encoder that en-
codes the input sequences and a decoder that sequen-
tially generates the expected assert statements, in
which the encoder and decoder are both Transform-
ers. Given an input token sequence X = (x4, ..., x,,)
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@Test
Test Method public void testGetAuthorities() {
assertEquals(authorities,
securityRoute.getAuthorities());
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Target Sequence

Tokenize .| assertEquals ( authorities ,

securityRoute . getAuthorities () )

1
1
1
1
1
1
1
1
|
1
! "<BOT>" testGetAuthorities ()
o public String getAuthorities() { /'\ 1 Tokenize { "<AssertPlaceHolder>" ; } "<EOT>"
Training return authorities; =\ v : » "<BOF>" getAuthorities () { return -
Set Focal Method | - authorities ; } "<EOF>" "<BOS>" Get
' the authorities "<EOS>"
1
| Source Sequence
ek :
* Get the authorities ............................................. :
Summarization */ 1
1
! (D Data Processing
1
- Transformer Encoder i
1 1 1
1 i '
 (OBO - b
1 ! 1
' E l Embedding !
1 1 1
i (D e m me)
Testing ' e ikl Haiuiaieiiaieie ittty '
Set Train,
E — — Attention Mechanism

l Generate

Assert
Statement

(3 Assert Statement Generation

i
b L L)

1
i i
1 1
i i
1 1
i i
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i i
1
E > RO > > :
! v v v v o
i i
A 0 [ ) . i
1 1
! assertEquals ( ) </s> !
i
' Transformer Decoder !

@ Model Training

Fig.3. Overview framework of SAGA.

(i.e., test prefix + focal method + summarization),
SAGA first obtains the contextualized vector repre-
sentations by projecting them into an embedded vec-
tor space through the embedding and positional en-
coding layer.

X = Embedding(X ) + Positional Encoding(X).

Then, the vector X is fed into the encoder to cap-
ture the long-term dependencies from different per-
spectives of the input sequences. The encoder com-
prises a stack of Transformer layers, each of which
contains a multi-head self-attention layer followed by
a position-wise fully connected feed-forward network.
Instead of performing a single attention function, all
attention blocks are split up into independent “heads”
whose outputs are concatenated and linearly project-

ed back onto a space with the initial dimensionality.
Each individual attention block computes the scaled
dot-product attention with different linear projec-
tions. The details are given by the following equa-
tions:

MultiHead(Q, K, V) =
Concat(head,, ..., head,)W?,

head; = Soft (qikl'T)v =1 h
ead; = Softmax i =1, ..., h,
Vi

where @, K, and V represent the matrices of
queries, keys, and values, respectively, while q;, k;,
and v; represent their split matrices for head;. Specif-
ically, W©° denotes the weight matrix for linear trans-

formation, and d;, denotes the scaling factor for com-
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puting scaled dot-product attention.

The decoder in SAGA is a Transformer-based de-
coder that generates one new token at a time until a
special stop token is reached. The decoder is similar
in structure to the encoder except for the usage of the
mask mechanism in multi-head attention, and the
mask mechanism forces to attend only to past tokens
and avoids distraction and information leakage of the
subsequent tokens in training. Followed by the
masked multi-head attention layer is another multi-
head attention that attends to both the past tokens
and the feature representations learned by the en-
coder. Finally, the output of the final decoder layer is
fed into a softmax layer to map target token scores
into target token probabilities.

3.2 Data Processing

At this stage, SAGA prepares the collected source
code and summarization in such a manner that it can

be directly fed into the encoder-decoder model. SAGA
first generates consolidated input for the CAPS
dataset, which combines the three pieces of developer-
written content into one sequence isolated by special
tokens. The consolidation of the CAPS dataset con-
sists of three major steps: 1) ignoring the comments,
new line characters, and redundant whitespaces with-
in the body of test and focal methods, and removing
the comment-related symbols (e.g., “/*”) within the
summarization; 2) appending the summarization, sig-
nature, and full body of the focal method to the end of
the test method; 3) replacing the entire assert state-
ment from the test method with the unique token
“< AssertPlaceHolder >". The ConsolidatedSource
Sequence in Fig.4 shows an example of CAPS input
where tokens are separated by single whitespace. The
input sequence involves the test prefix, focal method,
and summarization, which are isolated by different
abbreviate tokens (e.g., “< B0S >" denotes the begin-
ning of summarization). And the TargetSequence in

___________________________________________

1
. CAPS Input !
1
I 1
1
H Test Method Focal Method Summarization !
1
1
i @Test _ - public void getAuthorities() { = !
1 public void testGetAuthorities() { return authorities; * Get the authorities 1
! assertEquals(authorities, securityRoute.getAuthorities()); } */ ,
O O SO
___________________ .
1 -2
! Data Processing :
! v !
1
| Consolidated Source Sequence Tokenized Source Sequence !
1
. 1
i "<BOT>" testGetAuthorities( ) { "<AssertPlaceHolder>" ; } Tokenize "<BOT>" _test Get Authorities () {.._} "<EOT>" |
| "<EOT>""<BOF>" getAuthorities( ) { return authorities ; } — "<BOF>" get Authorities ( ) {.. } "<EOF>" =
 "<EOF>""<BOS>" Get the authorities "<EOS>" "<BOS>"_Get _the authorities "<EOS>" !
U TR
Fine-Tune Input
_____________________________________________________________________________________ |
Pre-Trained Encoder-Decoder Model '
1
1
Target Sequence Transformer Transformer ,
Decoder Encoder

assertEquals (‘authorities, assecurityRoute . getAuthorities () )

/Corrcct / lncorrect/ <+——

1
1
1
1
1
1
1
1
1
1
1
i
: Expected Result
:
1
1
1
1
1
1
1
1
1
1
1

assertEquals ( authorities,
assecurityRoute . getAuthorities () )

l Output

Generated Sequence
Detokenize

h

_assertEquals _(_authorities _, _security
Route . get Authorities () )

Fig.4. Pipeline of SAGA.
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Fig.4 is a single assert statement that the decoder is
expected to generate. Then, SAGA uses the sentence-
piece tokenizerB0 to divide every word token into a
sequence of sub-word tokens for alleviating the open-
vocabulary problemBl. In this manner, the tokens
with low frequency can be synthesized more easily,
thus making the assert statement generation task
more tractable.

3.3 Model Training

As illustrated in Fig.4, the training pipeline of
SAGA takes the generated CAPS dataset as input
and works on three different pieces of developer-writ-
ten content: 1) the test method that contains infor-
mation on how to test the focal method; 2) the full
context of the focal method; 3) and the summariza-
tion of the focal method written in NL. We begin
with the pre-trained model serving as the reference
architecture for the proposed SAGA framework. First-
ly, the previous data processing step tokenizes the in-
put CAPS dataset. We then perform the fine-tuning
on the task of assert statement generation. At the fi-
nal step, the encoder in SAGA encodes the tokenized
source sequence, and the decoder sequentially pre-
dicts the assert statement.

3.3.1 Pre-Training

Based on the empirical findings from existing
datasets, we believe that developer-written summa-
rization can be beneficial to models specialized in the
assert statement generation task. Moreover, com-
pared with the other two code implementations, we
consider the summarization as a different modality. In
order to learn generic representations for NL and PL,
we leverage the state-of-the-art model CodeT5 as the
starting point to train SAGA. That is, we can take
the learned parameters of a pre-trained model and use
them as initialization for SAGA. The goal of SAGA is
to automatically synthesize an assert statement for
the given test prefix, focal method, and summariza-
tion. We formulate this task as a text-to-text predic-
tion, which is consistent with CodeT5’s design. Thus,
by using the learned parameters pre-trained on the
colossal clean crawled corpus, SAGA is able to learn
many generic patterns that can be directly applied to
the task of generating assert statements. In addition,
we isolate different input modalities with special to-
kens (as described in Subsection 3.2), which would
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further benefit SAGA in using CodeTb5 to learn the
relationship between NL and PL.

3.3.2 Fine-Tuning

At this stage, we fine-tune the pre-trained model
for the task of generating assert statements. The fine-
tuning techniques can optimize the pre-trained pa-
rameters to make them more suitable for the down-
stream tasks. Specifically, we represent the assert
statement generation task in a “text-to-text” format,
where the input is a consolidated sequence of test pre-
fix, focal method, and summarization, and the out-
put is the expected assert statement. The fine-tuning
process is performed using the training corpus of
CAPS dataset D, and each instance within D can be
formally represented as a pair D, = {c, a}, where
c¢=(t, f, s) comprises the test prefix ¢, the corre-
sponding focal method f, and the summarization s,
and a denotes the developer-written assert statement.
The fine-tuning objective is to minimize the cross-en-
tropy loss by learning the mapping ¢ — a as a condi-
tional probability p(alc).

3.4 Assert Statement Generation

To sum up, the encoder learns representations of
every sub-word token in the input source sequence us-
ing all input instances in the training corpus, essen-
tially encoding the whole input information in every
input sub-word token representation. The self-atten-
tion mechanism allows the decoder to attend to all
previously generated sub-word tokens and decide on
generating the correct token at the correct place. Dur-
ing inference, SAGA uses beam search to generate the
assert statement sequentially. Once the decoder
reaches the stop token, SAGA outputs the top-ranked
sequence in the beam search. SAGA then detokenizes
the sequence of sub-word tokens to restore the origi-
nal sequence. Finally, we compare the detokenized se-
quence with the target sequence to determine whether
the SAGA-generated assert statement exactly match-
es the developer-written one.

4  Experimental Setup
4.1 Experimental Subjects

During the dataset construction process, our goal
is to map the test methods to their corresponding fo-
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cal methods. For this task, we first mine a 100k sam-
ple of public GitHub repositories written in the Java
programming language, which has been used in the
previous studiesl® 1. Next, we parse the selected
projects and extract all the declared methods with
their associated metadata (e.g., annotations, signa-
tures, and variables) using Spoon[32l. The parsed code
will be utilized for identifying focal methods as well as
augmenting the focal methods with summarization.
Finally, for a particular test method, we map it to the
corresponding focal method for deriving the CAPS
dataset.
4.1.1 Test and Focal Method Mapping

In this stage, we establish the test-to-code trace-
ability links (i.e., mapping the corresponding focal
method to each test method) for the extracted meth-
ods. To this aim, we introduce the following hybrid
heuristic strategy in this paper.

e Naming Convention (NC). Considering the in-
tention behind NC, test method names are often simi-
lar to those of the corresponding focal methods.
Therefore, the first heuristic strategy attempts to
match the test method with a focal method having a
name that matches, after removing the possible
“Test” prefix or suffix. If the names match exactly,
the focal method is correctly identified for the test
method.

e Static Call Graph (SCG). The NC technique
would fail to identify the focal method when no test
method name contains its name. To address the
drawback of NC, we then use SCG to aid the map-
ping process if the previous heuristic strategy does not
identify any focal method. The second heuristic strat-
egy hypothesizes that we can derive the focal method
by inspecting method invocations in the test methods.
To identify the focal method of a particular test
method, we begin by collecting all production classes
that are the destination of an outgoing method invo-
cation within the test method and selecting the most
referenced production class as the focal class. Then,
we compute the intersection between the list of
method invocations within the test method and the
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list of methods declared within the focal class by
querying the complete signature string. If the inter-
section is a unique method, then we select the method
as the focal method.
4.1.2 CAPS Dataset Construction

After identifying the corresponding focal methods
for all the test methods, we further filter the focal
methods without developer-written summarization to
construct the CAPS dataset. Specifically, CAPS is a
corpus of test prefixes, corresponding focal methods
with summarization, and assert statements. Addition-
ally, due to the possibility of cloning methods across
different GitHub repositories, we further exclude du-
plicated instances to prevent the same instance ap-
pearing in both the training and testing sets. After
preprocessing, we create two adapted CAPS datasets
(referred to as CAPS, and CAPSy) by modifying
ATLASB! and Method2Test[!!, respectively. As men-
tioned in the previous studyl®l, the original ATLAS
dataset is constructed in a simplified way that ex-
cludes some challenging cases (i.e., the assert state-
ments that contain tokens absent from the input con-
tents) for generation. In this paper, CAPS, and
CAPS,; include the cases of assert statements with
unknown tokens. CAPS, and CAPS,; contain a total
of 77931 and 117709 unique instances, respectively.
Next, we further split each dataset into training, vali-
dation, and testing sets by the ratio of 8:1:1. The
dataset split is performed carefully by taking into ac-
count possible data leakage. To be specific, any two
instances belonging to the same GitHub repository
cannot be put in two different sets (e.g., one in train-
ing and the other in testing). In other words, all the
instances belonging to the same GitHub repository
will be put in the same set. Table 1 reports the de-
tailed statistics of the two datasets, where MaxL,
MinL, and AvgL denote the maximum length, the
minimum length, and the average length, respectively.
4.2 Experimental Design
We conduct experiments on the two adapted
CAPS datasets to evaluate the effectiveness of SAGA.

Table 1. Detailed Statistics of Two Adapted CAPS Datasets
Dataset Split Source Code Length Summarization Length Assert Statement Length
(# of Instances) (# of Tokens) (# of Tokens) (# of Tokens)
Training Validation Testing MaxL  MinL.  AvgL MaxL MinL AvgL MaxL MinL AvgL
CAPS, 62386 7756 7789 984 11 131.8 659 3 31.0 47 4 12.8
CAPSy 93246 11492 12971 982 16 182.5 726 3 36.2 529 3 13.1
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In this paper, we compare SAGA with the following
five baselines that are related to our work.

e TestNMTU: an experimental approach to test
generation using an RNN-based NMT model, allow-
ing a developer to generate an approximate test for a
given function.

e ATLASB: a DL-based model that uses the RNN
encoder-decoder with the copy-attention mechanism
to generate assert statements.

e T5126]: a pre-trained model that is fine-tuned us-
ing the ATLAS datasetl®l for the assert statement
generation task.

o T5-Extension?”: an extended version of the TH
modell0 paying particular attention at the role
played by pre-training and multi-task fine-tuning on
the model’s performance.

e Integration?9: an IR-based approach combined
with ATLAS to enable more powerful assert state-
ment generation.

We initialize SAGA with the pre-trained CodeT5-
small checkpoint® from the Huggingface’s website.
We adopt the same architecture as the T5[1% model,
consisting of 8-headed attention and six layers in both
the encoder and decoder. We set the maximum source
and target sequence lengths both to 512 and the
batch size to 256. For the implementation of base-
lines, we reimplement TestNMT and ATLAS with the
same architectures and hyper-parameters described in
the relevant papers using OpenNMT-py?3l. As for Th
and T5-Extension, we use the publicly released check-
points. As for integration, we download the available
source code provided by the authors. To make a fair
comparison, we uniformly use the training set of the
CAPS dataset to train or fine-tune baselines and
SAGA on the task of assert statement generation, re-
spectively. During the training or fine-tuning step, we
train each corresponding model for a maximum of 100
epochs. After each epoch, we compute the loss on the
validation set and save the model with the minimum
validation loss. To avoid the over-fitting issue, we
perform early stopping if the validation performance
does not improve for five consecutive epochs. During
testing, we use a beam search and set the beam size
to five. Finally, we evaluate the trained model on the
testing set and report the comparison results in this
paper. We conduct experiments on four NVIDIA
GTX 1080Ti GPUs.
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4.3 Experimental Metrics

To quantitatively compare the performance of
SAGA with the baselines, we choose the following
three widely used metrics(7: 8 29],

e Accuracy. This paper uses the top-1 accuracy to
measure the performance of the proposed approaches.
When the generated assert statement matches exact-
ly with the developer-written assert statement, it is
correct. Otherwise, it is incorrect.

e BLEU. The BLEU (Bilingual Evaluation Under-
study)B4 score is a variant of the precision metric
widely used to assess the quality of NMT systems.
This metric can calculate the similarity by comput-
ing the n-gram precision of a candidate sentence to
the reference sentence, with a penalty for the overly
short length. In this paper, we report the BLEU-4
score.

e ROUGE. ROUGE (Recall-Oriented Under-
study for Gisting Evaluation)] formally calculates
an n-gram recall between a candidate sentence and a
set of reference sentences. In this paper, we present
the value of ROUGE-L, which computes the F-mea-
sure based on the longest common subsequence.

5 Results and Analysis

In this section, we present the experimental re-
sults for measuring the performance of SAGA and an-
swering the following three research questions (RQs).

o RQ1. How does SAGA perform compared with
the state-of-the-art baselines?

® RQ2. What is the effectiveness of the developer-
written summarization on the task of assert state-
ment generation?

e R(@Q3. What is the quality of the generated in-
correct assert statements?

5.1 Answering RQ1

To answer this question, we compare SAGA with
five baselines on two adapted datasets. We remove
the summarization contents from the CAPS corpus
when training the baselines. In particular, we observe
that each class name within the fine-tuning datasets
of T5 and T5-Extension is preceded by its complete
package name (e.g., the String class is tokenized as ja-
va. lang. String). Thus, we also apply such a modifi-

@https://huggingface.co/Salesforce/codet5-small, Jan. 2025.
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cation to the two datasets when training the two
baselines.

5.1.1 Experimental Metrics Evaluation

Table 2
datasets in terms of the three evaluation metrics. The
best result for each metric is marked in bold. As
shown in Table 2, SAGA substantially outperforms
the five baselines on both datasets. Specifically,
SAGA achieves an accuracy of 53.1% and 19.8% on
the two datasets, respectively, which achieves a rela-
tive improvement of 42.7% and 40.4% over the best

shows the model performance on the two

baseline model integration, respectively. In terms of
the BLEU-4 metric, SAGA obtains 75.56 and 39.17
scores on the two datasets, respectively, which is
15.83 and 16.39 points higher than integration, re-
spectively. In terms of the ROUGE-L metric, SAGA
obtains 85.96 and 65.15 scores on the two datasets,
respectively, which is 6.45 and 2.89 points higher than
integration, respectively.

In addition, we observe that T5 yields poorer per-
formance on the two datasets compared with the re-
sults in the original paper[26l. Since we use the public
source code provided by the authors and follow the
same training strategy as in the original paper, we
further look into the datasets and draw the following
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possible reasons. 1) On CAPS, and CAPS,, the aver-
age length of the assert statements (after adding the
complete package name to the front of each declared
class) in the testing set is 21.69 and 22.32 tokens, re-
spectively, while the average length is 17.25 tokens in
T5’s testing set. Thus, the need for generating longer
assert statements may be a reason for decreasing the
model performance. Furthermore, because the com-
plete package name list typically consists of fixed pat-
terns, T'5 achieves a comparable BLEU-4 score while
maintaining low accuracy. 2) Since CAPS, and
CAPS,; contain the challenging cases of assert state-
T5 is fine-
tuned on the dataset that excludes such challenging
cases. Therefore, T5 may be less capable of dealing
with open-vocabulary issues. 3) After analyzing the
vocabulary of T5 dataset, we discover that all upper-
case letters are replaced with lowercase letters. Such
modifications would negatively change the tokens
with different semantics into the same and reduce the
difficulty of this task as well.

ments with unknown tokens, however,

5.1.2  Assert Statement Types Evaluation

In addition, we also analyze the types of assert
statements that are correctly generated by each mod-
el. Table 3 presents the accuracy results on assert

Table 2. Comparison Results of the Three Metrics for RQ1
Model CAPS, CAPSy
Accuracy (%) BLEU-4 ROUGE-L Accuracy (%) BLEU-4 ROUGE-L
TestNMT 9.5 21.74 60.95 1.1 2.87 46.04
ATLAS 18.0 28.70 70.01 7.6 14.22 60.36
T5 9.1 26.44 43.94 2.1 20.31 49.74
T5-Extension 23.8 33.02 72.15 7.6 21.86 57.85
Integration 37.2 59.73 79.51 14.1 22.78 62.26
SAGA 53.1 75.56 85.96 19.8 39.17 65.15
Table 3. Detailed Statistics of Each Assert Type
Dataset Model True False Null NotNull Equals Same  ArrayEquals That Other
CAPSA TestNMT 148(12.8%)  12(2.9%) 64(17.4%) 83(21.7%)  377(9.8%) 0(0.0%) 18(12.5%) 38(2.7%) -
ATLAS 207(17.9%) 55(13.1%) 105(28.6%) 198(51.8%) 687(17.9%) 4(3.8%) 36(25.0%) 107(7.7%)
T5 146(12.6%) 15(3.6%) 58(15.8%) 75(19.6%) 329(8.6%) 0(0.0%) 9(6.3%) 80(5.8%) -
T5-Extension 342(29.6%) 76(18.1%) 112(30.5%) 146(38.2%) 903(23.6%) 9(8.6%) 37(25.7%) 227(16.3%) -
Integration  469(40.6%) 116(27.7%) 163(44.4%) 221(57.9%) 1404(36.7%) 38(36.2%)  60(41.7%) 424(30.5%) -
SAGA 663(57.4%) 221(52.7%) 218(59.4%) 266(69.6%) 1935(50.5%) 54(51.4%)  72(50.0%) 704(50.7%)
CAPSy; TestNMT 0(0.0%) 1(0.2%) 0(0.0%) 1(0.2%)  136(2.4%) 0(0.0%) 0(0.0%) 0(0.0%) 11(1. 6‘7)
ATLAS 77(5.0%)  47(8.8%) 123(24.9%) 181(28.4%)  349(6.2%)  0(0.0%) 24(8.6%) 63(2.1%) 120(17.8%)
T5 45(2.9%) 5(1.0%) 16(3.2%) 3(0.5%) 130(2.3%) 0(0.0%) 10(3.6%) 22(0.7%) 36(5.3%)
T5-Extension 140(9.0%) 57(10.7%) 107(21.7%) 68(10.7%)  462(8.2%) 0(0.0%) 33(11.8%) 50(1.6%) 67(9.9%)
Integration  277(17.8%) 57(10.7%) 163(33.1%) 164(25.7%) 689(12.3%) 15(12.0%)  77(27.6%) 258(8.4%) 125(18.5%)
SAGA 364(23.5%) 153(28.8%) 191(38.7%) 165(25.9%) 1093(19.5%) 16(12.8%) 96(34.4%) 350(11.4%) 136(20.1%)
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statements of different types (with the number of ex-
act matches and their percentage). Note that the last
column indicates the results of four other assert state-
ment types (i.e., assertNotEquals, assertNotSame,
assertThrows, and fail) that are not included in the
CAPS, dataset. As it can be seen in Table 3, SAGA
is able to consistently outperform the baselines in all
the types on both datasets. The distribution of each
type correctly generated by SAGA is relatively even,
which mitigates the possible threat that SAGA is
only capable of generating a specific type of assert
Watson et all8l hypothesize that the
assertThat statements are more difficult to generate
due to the nature of the assert itself. Despite the com-
plexities of assertThat statements, as the developer-

statement.

written summarization often contains explicit hints
about how to understand the intended functionality
of focal method, SAGA is able to achieve high predic-
tion accuracy of 50.7% on the CAPS, dataset. As for
the challenging dataset CAPS,;, SAGA can still cor-
rectly predict 11.4% of the assert statements in the
testing set.

5.1.3 Length Distribution Evaluation of Correct
Assert Statement

We further investigate the ability of each model
to correctly predict long assert statements by analyz-
ing the length distribution of generated assert state-
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ments. Fig.5 shows the length distribution of correct
assert statements generated by each model on the two
datasets, where the X-axis represents the length of as-
sert statements (i.e., the number of tokens within
each assert statement) and the Y-axis represents the
number of correct assert statements for each corre-
sponding scale on the X-axis. We exclude the two
models (T5 and T5-Extension) with different assert
statement lengths in this comparison experiment. As
shown in Fig.5, it is notable that SAGA tends to be
superior to all the baselines in generating both short
and long assert statements.

Table 4 presents the average lengths of short (de-
noted as Meang) and long (denoted as Mean; ) assert
statements generated by each model together with the
corresponding accuracy, and the median values of all
correct assert statements. We regard the assert state-
ments with less than 15 tokens as short in this paper.
The statistic results shown in Table 4 validate our ob-
servation that SAGA is capable of correctly generat-
ing both short and long assert statements on the two
datasets. In addition, the IR-based model is able to
retrieve long sequences from the training corpus, and

integration thus achieves a comparable result against
SAGA.

5.1.4 Answer to RQ1

In summary, the proposed SAGA framework sig-
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Fig.5. Length distribution of correct assert statements. (a) CAPSy. (b) CAPSy;.
Table 4. Statistic Results of the Lengths of the Generated Correct Assert Statements
Model CAPS, CAPSy
Meang Meany, Median Meang Meany, Median
TestNMT 6.75(11.2%) 16.64(3.4%) 6 5.75(1.6%) 0(0%) 6
ATLAS 7.14(22.3%) 17.28(5.2%) 6 5.44(10.7%) 0(0%) 4
Integration 8.56(40.3%) 18.05(27.2%) 10 7.32(17.2%) 17.95(7.3%) 8
SAGA 8.79(58.3%) 18.18(38.0%) 10 7.43(24.7%) 18.01(9.1%) 8
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nificantly outperforms the baselines in terms of all the
experimental metrics. Our observations indicate that
SAGA is capable of generating both long assert state-
ments and the challenging cases with higher accuracy
against the baselines.

5.2 Answering RQ2

To answer this question, we evaluate the effective-
ness of developer-written summarization by conduct-
ing ablation experiments on each model (i.e., training
the corresponding model with summarization or not)
separately. For a fair comparison, the training strate-
gy and the hyper-parameter settings are consistent
with those described in Subsection 4.2.

5.2.1 Ablation Study

Table 5 presents the comparison results of the ab-
lation study. Each model comprises two lines of ex-
perimental results, in which the first line shows the
results of the model that is trained without using the
developer-written summarization and the second line
shows the results of using such additional informa-
tion. As shown in Table 5, we can observe that pro-
viding the summarization as complementary informa-
tion contributes to improving the performance of all
the models.

We also statistically compare the performance of
two different treatments in terms of accuracy for each
corresponding model using the McNemar’s test36],
which is a non-parametric statistical test suitable to
the paired dichotomous data summarized in a contin-
gency tableB7. To compute the test results for two
treatments 7T, (i.e., with summarization) and T, (i.e.,

without summarization), we firstly construct a contin-
gency table by counting the number of cases in which
1) both T and T, generate the correct assert state-
ment, 2) only T; generates the correct assert state-
ment, 3) only T, generates the correct assert state-
ment, and 4) neither T} nor T, generates the correct
assert statement. Then, the McNemar’s test is ap-
plied to the constructed contingency table to check
the null hypothesis stating that the difference be-
tween two treatments is insignificant. If the reported
p-value is less than the significant level 0.05, the null
hypothesis will be rejected, and it is drawn that the
disparity between treatments is significant and not
random. The implementation of the McNemar’s test
is available at the mcnemar function of the mlxtend
Python libraryB8l. To further complement the results
of McNemar’s test, we use the odds,atio Python li-
brary® to compute the odd ratio (OR) for measuring
the effect size. The OR value greater than 1 means
the usage of augmented information has a positive re-
lationship with the generation of meaningful assert
statements (i.e., more assert statements could be cor-
rectly generated with the aid of providing additional
summarization).

Table 6 reports the results of McNemar’s test to
determine if there are statistical differences when
training models with the two different treatments.
The following results are the observations from Table 6.

o As for the five DL-based models (TestNMT,
ATLAS, T5, T5-Extension, and SAGA), T; leads to
significantly better results (p-value < 0.05) with the
values of OR ranging from 1.03 to 1.43. This means
that chances of generating a correct assert statement
using T are 3% to 43% higher when compared with 7.

Table 5. Comparison Results of the Two Metrics for RQ2
Model CAPS, CAPSy
Accuracy (%) BLEU-4 ROUGE-L Accuracy (%) BLEU-4 ROUGE-L
TestNMT w/o S 9.5 21.74 60.95 1.1 2.87 46.04
w/ S 12.6 25.91 61.52 4.9 12.13 52.12
ATLAS w/o S 18.0 28.70 70.01 7.6 14.22 60.36
w/ S 23.8 39.89 74.74 9.9 17.94 61.90
T5 w/o S 9.1 26.44 43.94 2.1 20.31 49.74
w/ S 9.8 27.52 44.20 3.2 23.24 52.45
T5-Extension w/o S 23.8 33.02 72.15 7.6 21.86 57.85
w/ S 24.7 41.45 73.36 8.1 23.61 59.56
Integration w/o S 37.2 59.73 79.51 14.1 22.78 62.26
w/ S 37.4 60.92 80.13 14.1 22.94 62.56
SAGA w/o S 52.7 75.28 85.53 19.3 38.10 64.69
w/ S 53.1 75.56 85.96 19.8 39.17 65.15

Note: “w/o S” denotes without summarization, and ‘“w/ S” denotes with summarization.

Ohttps://github.com/JiguangPeng/odds ratio, Jan. 2025.
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Table 6. McNemar’s Test (p-Value and OR) in Terms of the

Accuracy Metric for RQ2
Model CAPS, CAPSy

p-Value OR p-Value OR

TestNMT < 0.05 1.38 < 0.05 1.21
ATLAS < 0.05 1.43 < 0.05 1.36
T5 < 0.05 1.08 < 0.05 1.10
T5-Extension < 0.05 1.06 < 0.05 1.07
Integration 0.33 1.01 0.61 1.01

SAGA < 0.05 1.03 < 0.05 1.04

e As for the IR-based model integration, we can
see that there is no statistically significant difference
between T; and T, (p-value is greater than 0.05).
Nevertheless, the value of OR (i.e., 1.01) indicates
that T; still improves the performance of integration
to some extent.

e In view of the inconsistent results described
above, we give the following possible explanations.
1) Intuitively, the DL-based models are able to direct-
ly learn definitive information from the provided sum-
marization to aid the assert statement generation
task. 2) As the key technique of integration is the IR-
based assertion retrieval, which is based on the Jac-
card similarity between the corresponding and given
focal-test written in PL, solely providing additional
summarization written in NL is difficult to continue
to increase the performance improvements during the
retrieval process.

Additionally, we analyze the uniqueness of cor-
rect assert statements generated by each model. Fig.6
shows the overlapping between the correct assert
statements generated by using input with summariza-
tion or not among each model evaluated on the two
datasets. As shown in Fig.6, we can find that the
(colored with light
green) tend to generate more unique correct assert

summarization-guided models

statements that fail to be generated by models with-
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out using summarization. For example, 587 correct
assert statements are uniquely generated by SAGA on
CAPSy, while 520 correct assert statements are
uniquely generated by SAGA without using summa-
rization. By further investigating the incorrect assert
statements generated by SAGA, we observe the exis-
tence of equivalent cases that are not exactly matched
with the developer-written ones but semantically
equivalent to the developer’s intent. We will discuss
these cases in Subsection 5.3.1.

5.2.2 Case Study

To better understand the effectiveness of using
summarization as complimentary information, we
present two cases in Fig.7 to demonstrate the ability
of summarization to guide the generation of assert
statements. As a case study, we take the SAGA mod-
el as an example to show the difference between as-
sert statements generated with or without summariza-
tion. Fig.7(a) shows an example of summarization ex-
plicitly providing the related token (i.e., resultSet),
which is missing from the test prefix and focal
method. Fig.8 visualizes the attention weights for the
encoder and decoder while generating the expected as-
sert statement. We can observe that SAGA learns the
relationship that function getConcurrency belongs to
class ResultSet from summarization and thus cor-
rectly predicts the token resultSet as the parameter
for the assert statement. Nevertheless, SAGA pre-
dicts an irrelevant token stmt when the summariza-
tion is not used. Fig.7(b) depicts an example of sum-
marization used to convey the intended functionality
of the focal method. From the content of the summa-
rization, we can clearly understand that the focal
method completes the functionality of returning the
hostname of RemoteMachine. As shown in Fig.9,

SAGA Integration T5-Extension T5 ATLAS TestNMT
408
CAPS, 397 3749 341 261 553 242 1519 333 180 50 .o 620 1237 162 428 555 185
w/ S
w/o S
587 520 73
CAPSy 1981 1759 66 374 673 311 151269116 640 642 342 126 511 23

Fig.6. Overlapping of the correct assert statements.
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Summarization

Developer-Written
Assert Statement

shouldCallConcurrency () throws SQLException
{ "<AssertPlaceHolder>" ; }

getConcurrency ( ) throws SQLException
{notClosed () ; return 0 ; }

{@inheritDoc } @see
java.sql.ResultSet#getConcurrency()

assertThat ( resultSet. getConcurrency (), i

Summarization

Developer-Written
Assert Statement

~ 0

assertThat ( stmt. getConcurrency ( ), is (0

testHostnameGetter ( ) { RemoteMachine machine = new

Test Prefix RemoteMachine ( "mac", 10 ) ; "<AssertPlaceHolder>" ; }

Focal Method ~ String getHostname () { return hostname ; }

Getter method of the hostname.
@return hostname of RemoteMachine.

assertEquals ( "mac", machine. getHostname () )

assertEquals ( "mac", machine. getHostname () )
assertEquals ( "192.168.0.1", machine. getHostname () )

Fig.7. Examples showing the effect of summarization in SAGA’s performance. (a) Example from the CAPS, dataset. (b) Example

from the CAPSy; dataset.
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Fig.8. Visualization of attention weights for the example in Fig.7(a).

SAGA indeed learns the relationship that the host-
name of machine is “mac”. Likewise, SAGA fails to
predict the token if the summarization is not avail-
able. These results reveal the effectiveness of our pro-
posed approach for assert statement generation.

5.2.3 Answer to RQ2

To sum up, providing the developer-written sum-
marization can improve the performance of the assert
statement generation task. Specifically, the summa-
rization contents may explicitly contain the related
tokens directly appearing as parameters in the assert

statements or convey the intended program behavior
via detailed functionality descriptions of the focal
methods to assist in the generation of correct assert
statements.

5.3 Answering RQ3

To answer this research question, we inspect the
assert statements that are not exactly matched with
the ground truth. The evaluation is split into two as-
pects: 1) discussing the semantically equivalent exam-
ples in the incorrect assert statements generated by
SAGA; 2) calculating the edit distance of incorrect as-
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Fig.9. Visualization of attention weights for the example in Fig.7(b).

sert statements generated by SAGA.

5.3.1 Equivalence Evaluation

In this subsection, we manually analyze the incor-
rect assert statements generated by SAGA and pre-
sent qualitative discussion. As shown in Fig.10, the list
of equivalent examples showcase some of the SAGA-
generated assert statements that do not exactly match
with the ground truth, but they are semantically
equivalent to the developer-written ones. For exam-
ple, the developer checks that t.getCount() == 999 is
true, while SAGA suggests an equivalent check with
assertEquals(999, t.getCount()). SAGA
suggests to assert a null string by checking whether

Similarly,

the length of string is equal to 0, while the developer

[ 79

uses the string directly. In another instance,
SAGA suggests to use the assertEquals statement
to judge the equivalence of two objects rather than
the assertThat statement. The last two instances
show that SAGA is able to successfully predict the
full assert statements except the given message
strings (one is different and the other is missing).
Given that the message strings do not provide crucial
logic checks in the test cases, these instances are still
valuable for the developers.

The existence of equivalence results highlights the
need for additional reasonable metrics beyond simple
accuracy, particularly, metrics that can recognize cas-
es where the generated assert statement is different
yet equivalent to the one written by developers, as
well as the non-equivalent ones that can also success-
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Equivalent Assert Statements

Ground Truth: assertTrue(t.getCount() = = 999)
SAGA: assertEquals(999, t.getCount())

Ground Truth: assertEquals(””, string)
SAGA: assertEquals(0, string.length())

Ground Truth: assertThat(formatter. format(DayOfWeek. WEDNESDAY). toString ( ), is ( "Wed"” ) )
SAGA: assertEquals(”"Wed”, formatter. format(DayOfWeek. WEDNESDAY). toString ( ) )

Ground Truth: assertFalse(”Run should be considered new”, context. isNewRunQueuedUp ( ) )
SAGA: assertFalse(”"Run should NOT be considered new”, context. isNewRunQueuedUp () )

Ground Truth: assertEquals(”Length of joined expressions is correct”, totalLength, joined.length ( ) )
SAGA: assertEquals(totalLength, joined.length () )

Fig.10. Examples of equivalent cases generated by SAGA.

fully pass the given unit test and cover the focal
method.

5.3.2  Edit Distance Evaluation

This evaluation computes the absolute token-
based edit distance between the incorrect assert state-
ments and the manually written ground truth (i.e.,
the minimum number of operations required to trans-
form incorrect assert statements into correct assert
statements). The edit distance metric gives evidence
to how useful incorrect assert statements are to devel-
opers. Intuitively, the easier it is to transform an in-
correct assert statement into a correct assert state-
ment, the more useful the assert statement would be
for developers. This evaluation is conducted by using
the assert statements generated for RQl. We com-
pute the Levenshtein distance between the model-gen-
erated and developer-written assert statement using
the pyxDamerauLevenshtein library®. As is shown in
Table 7, the statistic results reveal that SAGA per-
forms the best in edit distance, with the five base-
lines trailing behind. Specifically, the number of as-
sert statements that SAGA cannot generate correctly
on CAPS, and CAPS, is 3653 and 10403, respec-

tively. When the edit distance is 1, there are 1123
(30.7%) and 1089 (10.5%) incorrect assert state-
ments that can be converted into correct assert state-
ments on the two datasets, respectively, while 1968
(53.8%) and 2776 (26.7%) assert statements have an
edit distance that no more than three tokens from the
correct assert statements. In summary, there is a con-
siderable amount of incorrect assert statements gener-
ated by SAGA that are similar to the developer-writ-
ten ground truth. Many incorrect results can be
turned into perfect predictions by modifying only one
token (e.g., related constant or the assert statement
type). Thus, these incorrect assert statements can al-
so be useful to aid the developers.

6 Threats to Validity

In this section, we illustrate the main threats to
the validity of our approach, which are listed as fol-
lows.

o Faxternal Threat. The quality of the datasets is
the principal threat to external validity in this paper.
We create the CAPS dataset by modifying two exist-
ing datasets[® 11 which are all collected from open-
source GitHub repositories. During the construction

Table 7. Comparison Results of Edit Distance Analysis
Model CAPS, CAPSy
1 2 1 2 3

TestNMT 732(10.4%) 784(11.1%) 691(9.8%) 261(2.0%) 704(5.5%) 555(4.3%)
ATLAS 1085(17.0%) 583(9.1%) 573(9.0%) 1177(9.8%) 751(6.3%) 888(7.4%)
T5 712(10.1%) 183(2.6%) 59(0.8%) 157(1.3%) 254(2.0%) 204(1.6%)
T5-Extension 923(15.5%) 451(7.6%) 506(8.5%) 640(5.3%) 451(3.8%) 629(5.2%)
Integration 1352(27.6%) 529(10.8%) 444(9.1%) 1060(9.7%) 837(7.7%) 775(7.1%)
SAGA 1123(30.7%) 490(13.4%) 355(9.7%) 1089(10.5%) 893(8.6%) 794(7.6%)

©https://github.com/gfairchild/pyxDamerauLevenshtein, Jan. 2025.
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process, we use some heuristic rules to identify the fo-
cal methods for a given test method. Although we did
a rigorous data processing, there may be still some
noise. In our future research, we will adopt more opti-
mal ways of establishing test-to-code traceability
links[B9 49 for identifying focal methods more precise.
SAGA is also limited by its dependency on the usage
of merely developer-written test cases for model train-
ing. In general, manually written test cases usually
have different characteristics against those generated
by automated test case generation toolsl. As a fu-
ture direction, SAGA could be trained on an extend-
ed dataset consisting of test cases automatically gen-
erated by tools, which more closely fits the distribu-
tion of tool-generated testing set.

e Internal Threat. It is widely known that DL-
based models are sensitive to hyper-parameters. Thus
using a sub-optimal hyper-parameter can pose an in-
ternal threat to the validity of SAGA. Due to the lim-
itation of computational resources, we cannot con-
duct a thorough exploration of optimal hyper-parame-
ters in this paper. Since Raffel et al.1%l have explored
effective settings of hyper-parameters through exten-
sive experiments in previous work, we use the exactly
same hyper-parameters described by their paper. We
acknowledge that there might be room for further im-
provement by additional tuning. It is noted that the
large-scale language models (e.g., Codex[*?]) trained
for code completion are not included as baselines in
this paper, since SAGA has a much smaller model
size of 60M parameters than theirs of 12B (~200x).
We will further conduct an empirical study on the ef-
fectiveness of these general-purpose models on the
task of assert statement generation as future work.

o Construct Threat. In this paper, the experimen-
tal metrics used to evaluate model performance are
referred to as the construct threat. We adopt three
metrics that have been used in previous studies!” 8 29,
Although these metrics do not represent human judg-
ment, they can be used to quickly and quantitatively
evaluate the model performance. In the future, we will
conduct more human evaluations of the models.

7 Conclusions

In this study, we proposed a novel deep learning
(DL)-based approach SAGA for assert statement gen-
eration. To accurately reflect the developer’s intent,
we made the first attempt to leverage the summariza-

J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

tion of the focal method as complementary informa-
tion. We then took the advantage of a state-of-the-art
encoder-decoder language model, Code T5, to auto-
matically generate meaningful assert statements. Em-
pirical results demonstrated that the developer-writ-
ten summarization can provide definitive information
for improving the performance of assert statement
generation, outperforming the state-of-the-art ap-
proaches in terms of all the experimental metrics.

In the future, we plan to use static analysis tools
to collect additional contextual information (e.g.,
global context at project-level) pertinent to the given
focal method, aiming to assist SAGA in generating
more precise assert statements by augmenting the fo-
cal context input. Furthermore, semi-supervised pre-
training on projects where SAGA will be used to in-
fer assert statements could help our proposed model
to familiarize with project-related knowledge. As dis-
cussed earlier, we foresee that such DL-based ap-
proaches could be used to support developers in writ-
ing unit test cases more efficiently in practice. In this
scenario, we consider integrating SAGA as an IDE
plugin, which can be regarded as a code completion
tool by automatically suggesting assert statements
while manually writing unit test cases.
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