
The Journal of Systems and Software 166 (2020) 110585

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automated defect identification via path analysis-based features with

transfer learning

Yuwei Zhang

a , ∗, Dahai Jin

a , Ying Xing

b , Yunzhan Gong

a

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, China
b Automation School, Beijing University of Posts and Telecommunications, China

a r t i c l e i n f o

Article history:

Received 9 September 2019

Revised 16 February 2020

Accepted 19 March 2020

Available online 5 April 2020

Keywords:

Machine learning

Automated defect identification

Path analysis

Transfer learning

Model evaluation

a b s t r a c t

Recently, artificial intelligence techniques have been widely applied to address various specialized tasks

in software engineering, such as code generation, defect identification, and bug repair. Despite the diffuse

usage of static analysis tools in automatically detecting potential software defects, developers consider the

large number of reported alarms and the expensive cost of manual inspection to be a key barrier to using

them in practice. To automate the process of defect identification, researchers utilize machine learning al-

gorithms with a set of hand-engineered features to build classification models for identifying alarms as

actionable or unactionable. However, traditional features often fail to represent the deep syntactic struc-

ture of alarms. To bridge the gap between programs’ syntactic structure and defect identification features,

this paper first extracts a set of novel fine-grained features at variable-level, called path-variable charac-

teristic, by applying path analysis techniques in the feature extraction process. We then raise a two-stage

transfer learning approach based on our proposed features, called feature ranking-matching based trans-

fer learning, to increase the performance of cross-project defect identification. Our experimental results

for eight open-source projects show that the proposed features at variable-level are promising and can

yield significant improvement on both within-project and cross-project defect identification.

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

m

l

t

a

s

q

c

b

i

2

e

(

c

o

e

o

c

r

e

t

a

c

s

t

p

a

r

a

A

o

t

p

2

h

0

. Introduction

Software has been integrated into our everyday lives, which

akes improving software quality an increasingly critical chal-

enge for software developers. Recently, research at the intersec-

ion of software engineering and artificial intelligence has emerged

s an important means to address these challenges. In intelligent

oftware engineering, machine learning techniques have been fre-

uently applied to propose learnable probabilistic models of source

ode that mine the patterns of code. And these techniques have

een widely adopted in practice and proven to help resolve var-

ous software engineering problems (Wang et al., 2016; Hu et al.,

018a; 2018b). Thus, instilling intelligence in solutions for software

ngineering problems has attracted a lot of attention.

Static analysis (SA) tools (e.g., Defect Testing System (DTS)

 Yang et al., 2008)) are designed to automatically detect source

ode defects that might jeopardize the security and performance

f software systems. The diffuse usage of SA tools provides solid

vidence that SA techniques are of great significance to aid devel-
∗ Corresponding author.

E-mail address: hyun@bupt.edu.cn (Y. Zhang).

a

m

ttps://doi.org/10.1016/j.jss.2020.110585

164-1212/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article
pers. However, the large number of alarms reported and cost in-

urred in their manual inspection may be regarded as a key bar-

ier to using SA tools in practice (Muske and Serebrenik, 2016; Koc

t al., 2019). Since the program under analysis is not executed, SA

ools are required to speculate on how the program will behave

ctually (Ruthruff et al., 2008). That is, the output of SA tools be-

omes imprecise. As a consequence, developers need to manually

ift through a plethora of reported alarms to partition them into

rue defects and false positives.

To automate the process of defect identification, numerous ap-

roaches have been proposed for handling SA alarms (Heckman

nd Williams, 2011; Muske and Serebrenik, 2016). Recently, most

esearch has applied machine learning techniques in this area to

utomatically identify SA alarms by using classification algorithms.

iming at learning patterns of false positives that are difficult to

bserve by traditional SA approaches, machine learning techniques

hereby can greatly reduce the cost of manual inspection and im-

rove the benefit ratio of using SA tools in practice (Koc et al.,

017; Raghothaman et al., 2018).

In general, automated identification of SA alarms can be framed

s a standard binary classification problem, which shares a com-

on procedure. First and foremost, these approaches come up
under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2020.110585
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110585&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:hyun@bupt.edu.cn
https://doi.org/10.1016/j.jss.2020.110585
http://creativecommons.org/licenses/by/4.0/

2 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

s

t

p

r

p

S

c

S

2

i

c

w

m

n

2

t

t

t

p

t

r

f

m

t

m

d

H

g

5

s

m

r

t
with a set of hand-engineered features that are based on static

code metrics, churn data and defect information. Then, each alarm

is transformed into one vector with designed features via a map-

ping function. Vectors with labels (true defect or false positive) are

used to train machine learning classifiers. Finally, trained models

are utilized to predict new reported SA alarms as actionable (true

defects) or unactionable (false positives). Existing features at either

file-level or method-level mainly focus on the statistical character-

istics of the source code under analysis and presume that action-

able and unactionable alarms have distinguishable statistical char-

acteristics. However, empirical results (Wang et al., 2016; Zhang

et al., 2020; Koc et al., 2019) indicate that these features lack pre-

cision in representing the deep syntactic structure of alarms and

cannot distinguish alarms with different semantics. To exemplify,

the feature vectors of alarms with opposite manual inspection re-

sults can be similar or even identical when using traditional fea-

tures, inevitably leading to a loss of accuracy.

To bridge the gap between the reported alarms syn-

tactic structure and features used for defect identification,

Zhang et al. (2020) proposed a set of novel features at variable-

level, named variable characteristic (VC). These features were

extracted from the source code of variables that cause potential

defects. The experimental results demonstrated that features at

variable-level improve the performance significantly in automati-

cally identifying true defects from the reported SA alarms. Given

that only the variables that cause potential defects are considered

in the feature extraction process, however, further study is called

for.

Different from traditional hand-engineered feature extraction

approaches, we utilize path analysis techniques in this paper dur-

ing the feature extraction process. Existing studies (Le and Soffa,

2007; Zhao et al., 2011; Fan et al., 2019) have shown that path-

sensitivity analysis is a commonly used technique for false posi-

tives elimination when detecting defects. Therefore, extracting fea-

tures from a concrete specific path consisting related defect infor-

mation would be helpful to refine the process of feature extraction.

Firstly, we use a target-oriented path generation algorithm to pro-

duce an intraprocedural path from the control flow graph (CFG)

of the function that contains potential defects. Secondly, the irrele-

vant path nodes are filtered out by path slicing, instead of comput-

ing a backward slice in the program directly (Zhang et al., 2020).

Finally, our approach put forward a set of extended VC features,

named path-variable characteristic (PVC), extracted from the path

nodes.

Additionally, there is a major challenge in raising the accu-

racy of identifying defects from new software projects since it

is difficult to build a machine learning classifier without labeled

training instances. To address this limitation, researchers have ap-

plied transfer learning-based approaches (Nam et al., 2013; 2018)

in classifying unlabeled defects from new projects. The key idea

of these approaches is aiming to extract common knowledge from

one source project and transfer it to another target project, and a

classification model is trained with labeled defects in the source

project to predict defects in the target project.

In this paper, we raise a two-stage transfer learning approach,

called feature ranking-matching based transfer learning (FRM-TL),

to identify defects across projects based on the proposed PVC fea-

tures. Feature ranking aims to find a minimized feature space for

the dataset of the evaluated projects while preserving the original

data properties, and then the selected features with similar distri-

butions are matched between source and target projects.

Specifically, we investigate the following research questions:

• RQ1: Do PVC features outperform traditional features for

within-project defect identification (WPDI)?
• RQ2: How do PVC features perform in cross-project defect iden-

tification (CPDI)?

To answer the two research questions, we conduct an empirical

tudy on the open-source projects and implement a tool to extract

he values of the PVC features for each project to prepare the ex-

erimental dataset. The main findings of our work include:

• Our experimental results on RQ1 (with details described in

Section 5.1) demonstrate that the performance of WPDI when

using PVC features is promising. By comparing the traditional

features, the PVC features could achieve better WPDI results

with statistical significance.
• Our experimental results on RQ2 (with details described in

Section 5.2) demonstrate that our proposed transfer learning

model FRM-TL is feasible and its CPDI performance is better or

comparable to other baseline cross-project models with statisti-

cal significance, that is, the PVC features can achieve reasonable

performance in CPDI tasks.

The main contributions of this paper are presented as follows:

• A set of novel fine-grained features, named path-variable char-

acteristic, are proposed based on path analysis for both WPDI

and CPDI.
• An effective transfer learning model, called feature ranking-

matching based transfer learning, is introduced for CPDI.
• Experiments are conducted on eight open-source projects to

evaluate the performance of our approach in both WPDI and

CPDI.

The remainder of this paper is organized as follows. We survey

elated work in Section 2 . Section 3 introduces in detail the pro-

osed approach. We provide the experimental setup in Section 4 .

ection 5 shows the analyzing results of our research. We dis-

lose the threats to the validity of our research in Section 6 .

ection 7 concludes this paper and presents the future work.

. Related work

Two lines of research are most related to the work described

n this paper. First, we discuss the related work of using ma-

hine learning techniques in identifying software defects. Second,

e briefly introduce the related work of applying transfer learning

ethods in cross-project defect prediction (CPDP) scenario since

o study has proposed such methods for CPDI scenario.

.1. Defect identification using machine learning

To date, most approaches have proposed hand-engineered fea-

ures (Wang et al., 2018) to learn distinguishable patterns between

rue defects and false positives. The principle of defect identifica-

ion using machine learning is to train a model based on the pro-

osed features and apply the model to identify new alarm as ei-

her actionable or unactionable. The unactionable alarms are not

eported to the developers for these alarms are more likely to be

alse positives. Ruthruff et al. (2008) proposed a logistic regression

odel based on 33 features extracted from the alarms themselves

o predict actionable alarms found by FindBugs, and a screening

ethodology was used to quickly discard features with low pre-

ictive power in order to build cost-effectively predictive models.

eckman and Williams (2009) evaluated 15 machine learning al-

orithms based on distinct sets of alarms characteristics out of

1 candidate features, which is one of the most comprehensive

tudies in identifying actionable alarms and achieves high perfor-

ance. Yoon et al. (2014) used the abstract syntax trees to rep-

esent structural characteristics and classified new alarms using

he probability computed by a support vector machine classifier.

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 3

F

f

o

K

v

p

s

o

e

c

l

d

2

t

p

t

2

i

f

e

l

d

i

u

t

p

p

p

T

b

H

t

l

O

v

b

p

i

i

s

o

e

t

t

p

b

s

b

t

i

s

T

t

m

C

a

e

a

2

p

t

p

o

w

3

f

s

i

s

i

f

t

p

3

S

t

a

o

t

c

t

t

fl

e

f

3

f

t

s

f

w

i

l

p

a

t

o

t

t

t

a

p

3

p

g

c

k

f

e

t

d

f

b

i

o

s
lynn et al. (2018) developed and tested four classification models

or SA alarms mapped to CERT rules, using a novel combination

f multiple SA tools and 28 features extracted from the alarms.

oc et al. (2019) applied neural networks to automatically learn

ector representation from the SA report texts for identifying false

ositive SA alarms.

To the best of our knowledge, there are no prior studies of de-

igning a set of hand-engineered features at variable-level based

n path analysis techniques. In this paper, we utilize CFG to gen-

rate paths for extracting syntactic information from the source

ode files and leverage the extracted PVC features to build machine

earning models for automatically identifying software defects. The

etailed feature extraction process will be described in Section 3.2 .

.2. Cross-project defect prediction using transfer learning

Due to the lack of labeled training instances, it is usually hard

o build accurate models for CPDP. Thus, researchers have pro-

osed various approaches based on transfer learning to improve

he poor performance of CPDP (Li et al., 2018; Herbold et al.,

018; Hosseini et al., 2019). The underlying idea of CPDP us-

ng transfer learning is to neutralize the negative effect of dif-

erent data distributions between source and target projects by

xtracting knowledge from one source project and applying the

earned knowledge to the target one during the training and pre-

iction processes. Watanabe et al. (2008) conducted CPDP exper-

ments on two software projects with the same feature set by

sing the average feature values to compute the similarity be-

ween the source and target projects. Turhan et al. (2009) pro-

osed the nearest-neighbour filter to collect instances in the source

roject that are the nearest-neighbours of instances in the target

roject for building prediction models. Ma et al. (2012) used the

ransfer Naive Bayes algorithm to build a defect prediction model

y weighting instances between the source and target projects.

erbold (2013) computed the Euclidean distance of the data dis-

ributions between source and target projects, in order to se-

ect better source projects for improving the CPDP performance.

n the similar lines, Liu et al. (2019) utilized two built super-

ised regression models to measure the similarity of data distri-

utions between source and target projects. Ryu et al. (2017) pro-

osed a transfer cost-sensitive boosting method for CPDP, which

s a combination of transfer learning and class imbalance learn-

ng. The proposed approach performs boosting that assigns the

imilarity weight between the source and target projects based

n the distributional characteristics and the class imbalance. How-

ver, the boosting method requires a small number of labeled

arget instances, which hinders its usage in the CPDP scenario

hat the target project has no historical labeled instances. To im-

rove the performance of CPDP, Xu et al. (2019) raised a novel

alanced distribution adaptation based transfer learning method,

imultaneously considering the marginal and conditional distri-

ution differences and adaptively assigning different weights to

hem. Nam et al. (2013) proposed a state-of-the-art transfer learn-

ng model called TCA+ extended from Transfer Component Analy-

is (TCA) technique by optimizing the data normalization process.

his approach is to find a shared latent space for both source and

arget projects, where their data distributions are similar. Experi-

ental results showed TCA+ was a promising method to improve

PDP. Additionally, Qiu et al. (2019) adopted TCA to learn transfer-

ble joint features from both deep learning-generated and hand-

ngineered features across projects, which enhances the transfer-

bility of hybrid features in CPDP scenarios.

This research mainly draws the idea from (Nam et al., 2013;

018) and focuses on the application of CPDI scenario. We first

ropose a top ranking-based approach to select a PVC subset in

he source project. And then the selected PVC features from source
roject are matched to the target project based on the similarity

f feature distribution for building CPDI models. In Section 3.4 , we

ill explain our proposed transfer learning method in detail.

. Methodology

Fig. 1 overviews the procedure of automatically identifying de-

ects proposed in this paper. Our approach consists of four major

teps: 1) collecting SA alarm instances and labeling them; 2) apply-

ng path analysis techniques to extract fine-grained features from

ource code; 3) mapping features into integer vectors for build-

ng both WPDI and CPDI models; 4) presenting a two-stage trans-

er learning model based on feature ranking and matching to raise

he accuracy of CPDI. In the following subsections, we describe the

roposed approaches in detail.

.1. Data preparation

The evaluated projects are originally analyzed statically by the

A tool, and then, the reported alarms are inspected manually by

he developers in order to label each alarm as either TRUE (action-

ble) or FALSE (unactionable). To label a reported SA alarm, devel-

pers need to review the related code according to defect informa-

ion. If a data-flow from an untrusted source without any sanity

heck can be detected by the developers, the reported alarm is a

rue defect. Otherwise, the reported alarm is a false positive. After

hat, we use the CFG, a general model to represent the execution

ow between statements in a given function, to produce paths for

xtracting syntactic information from source code files, which is

ully explained in the next subsection.

.2. Path analysis-based feature extraction

For the sake of easy explanation, we introduce a C language

unction str_add_str from spell shown in Fig. 2 as a mo-

ivating example. Zhang et al. (2020) used line 117 as the seed

tatement to compute a backward slice for variable str1 in the

unction directly, and then a set of statements at lines {114,115,117}

ere produced for feature extraction. However, we can easily find

n the code that variable str1 at line 117 is contained in a for

oop structure, that is to say, variable str1 is influenced by the

redicate within the for statement at line 116. Thus, variables pos
nd str2 should also be considered as the causes of resulting in

he potential null pointer dereference (NPD) defect at line 117. But

ur previous approach (Zhang et al., 2020) is incompetent to ex-

ract the syntactic information of variables pos and str2 due to

he limitation of path-insensitiveness. To refine the process of fea-

ure extraction in this paper, we extract features from the gener-

ted specific paths containing related defect information to achieve

ath sensitive analysis.

.2.1. Target-oriented path generation algorithm

As is shown in Fig. 3 , the proposed approach is performed by

rocedure generatingOneIntraPath , which is a target-oriented path

eneration algorithm (Zhang et al., 2017). According to the given

overage criteria, the algorithm firstly generates an initial path

eyPath covering the input target from the CFG of the given

unction. The initial path consists of a sequence of nodes from the

ntry node of the CFG to the target node. This step is repeated un-

il a feasible keyPath is selected. The feasibility of keyPath is

etermined by the interval arithmetic technique implemented in

unction isIntraPathFeasible , which is a data flow analysis-

ased approach that computes the value interval of each variable

n the path nodes to check its feasibility. Secondly, since the nodes

f keyPath may be discontinuous on the CFG, the backtracking

earch strategy is employed for filling the path segment keyPath

4 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

Fig. 1. Automated defect identification process.

Fig. 2. A motivating example.

p

fi

m

i

r

2

n
as a complete intraprocedural path oneIntraPath . Finally, the

algorithm returns a complete intraprocedural path covering the

target node that contains the potential defect.

3.2.2. Path-variable characteristics

For our paper, we first utilize a target-oriented path genera-

tion algorithm to produce one intraprocedural path for each re-
orted alarm to extract syntactic information from source code

les. When analyzing the generated paths, each path node can be

atched to one type of abstract syntax tree (AST) nodes. Specif-

cally, four types of AST nodes are selected as tokens: 1) decla-

ation nodes such as type declarations, method declarations, etc;

) method invocation nodes; 3) assignment nodes; 4) control-flow

odes, i.e., if statements, for statements, and while statements.

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 5

Fig. 3. Algorithm for generating one intraprocedural path covering the defect target.

Table 1

Overview of the extracted PVC features.

ID Name Description

PVC 1 IP_LOC number of source code statements counted from the definition statement of the IP variable to

the statement containing a potential defect

PVC 2 , PVC 3 {Method, File}_LOC number of source code statements in method, file

PVC 4 Var_Type type of the related variable(e.g., integer variable)

PVC 5 Var_Property scope of the related variable(e.g., global variable)

PVC 6 Var_Init initial status of the related variable after defined

PVC 7 − PVC 10 Def_IP_{C, V, Lib, User} IP variable assigned by a constant value, a variable value, a library function return value, an

user-defined function return value

PVC 11 − PVC 14 Def_Other_{C, V, Lib, User} other variables assigned by a constant value, a variable value, a library function return value, an

user-defined function return value

PVC 15 − PVC 18 Def_If_{C, V, Lib, User} related variables assigned by a constant value, a variable value, a library function return value, an

user-defined function return value within an if structure

PVC 19 − PVC 22 Def_For_{C, V, Lib, User} related variables assigned by a constant value, a variable value, a library function return value, an

user-defined function return value within a for structure

PVC 23 − PVC 26 Def_While_{C, V, Lib, User} related variables assigned by a constant value, a variable value, a library function return value, an

user-defined function return value within a while structure

PVC 27 − PVC 29 Use_IP_{V, Lib, User} IP variable referenced by a variable value, a library function , an user-defined function

PVC 30 − PVC 32 Use_IP_{If, For, While} IP variable referenced by the predicate in an if statement, a for statement, a while statement

PVC 33 − PVC 35 Use_Other_{V, Lib, User} other variables referenced by a variable value, a library function , an user-defined function

PVC 36 − PVC 38 Use_Other_{If, For, While} other variables referenced by the predicate in an if statement, a for statement, a while statement

PVC 39 − PVC 41 Use_If_{V, Lib, User} related variables referenced by a variable value, a library function , an user-defined function

within an if structure

PVC 42 − PVC 44 Use_For_{V, Lib, User} related variables referenced by a variable value, a library function , an user-defined function

within a for structure

PVC 45 − PVC 47 Use_While_{V, Lib, User} related variables referenced by a variable value, a library function , an user-defined function

within a while structure

T

w

e

a

o

g

l

(

A

2

p

d

t

f

d

n

a

f

t

3

fi

a

e

i

l

f

v

f

A

w

i

t

t

(

hen, we exclude the irrelevant path nodes by computing a back-

ard path slicing, and two types of path nodes remain for feature

xtraction: 1) the nodes containing the inspecting point (IP) vari-

ble that results in the reported alarm; 2) the nodes containing

ther variables that influence the IP variable. Finally, a set of fine-

rained features at variable-level are extracted based on the se-

ected tokens and the def-use relationship of the related variables

both IP variable and other variables) in the remaining path nodes.

dditionally, we adopt the LOC-based metrics used in (Zhang et al.,

020) to improving the generalization performance of our pro-

osed model. Table 1 lists the extracted PVC features with detailed

escription.

Fig. 4 demonstrates an example of extracting PVC features from

he motivation code in Fig. 2 . The path node n 7 is used as the de-

ect target node for the path generation algorithm, which will pro-

uce an intraprocedural path p = entry → n 1 → n 2 → n 4 → n 6 →
 7 . In this case, str1 is considered as the IP variable while pos
nd str2 are considered as other variables, and then seven PVC

eatures based on the path analysis will be extracted from the mo-

ivation code.

f

a

c
.3. Feature vector mapping and postprocessing

To train machine learning classifiers for defect identification, we

rst build a mapping between integer values and PVC features,

nd encode reported alarms to integer feature vectors. Since the

xtracted PVC features are distinct for each reported alarm, the

nteger feature vector of each reported alarm may have different

engths. Thus, we append 0 to PVC features that are not extracted

or each reported alarm and make the lengths of all integer feature

ectors consistent. The mapping process can be represented as the

ollowing mapping function:

 � −→ FV = (PVC , R (A)) (1)

here A is the alarm reported by the SA tool, FV is the mapped

nteger feature vector, PVC is a list of integer numbers denoting

he value of the 47 PVC features extracted from A , and R (A) is

he manual inspection result of A , which is labeled either TRUE

actionable) or FALSE (unactionable).

Fig. 5 demonstrates an example of constructing a feature vector

rom the code in Fig. 2 . The upper left corner of the figure is the

larm’s report log obtained from the SA tool, and the upper right

orner of the figure is an intraprocedural path generated from the

6 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

Fig. 4. An example of feature extraction.

Fig. 5. An example of feature vector construction.

f

3

t

2

n

t

m

t

a

b

b

a

fi

f

t

t

v

t

t

W

{

a

p

r

m

p

t

o

p

CFG of the code in Fig. 2 . The ellipses in the sample feature vector

represent the PVC features that value 0.

Feature vectors usually suffer from mislabeling issue

(Tantithamthavorn et al., 2015). Therefore, defect identification

models trained on noisy data may be unreliable. To prune mis-

labeling data, we use the RemoveMisclassified filter implemented

in Weka (Witten et al., 2016), an open-source software devel-

oped for data mining tasks, to eliminate the instances that are

incorrectly classified. The majority voting classifier implemented

in (Zhang et al., 2020) is utilized to base the misclassifications.

Since our objective is not to find the best training set, we use the

default parameters in Weka and save the effort of well tuning the

parameters.

3.4. Feature ranking-matching based transfer learning

The lower part of Fig. 1 demonstrates the overview of CPDI

based on the two-stage transfer learning approach. In the fig-

ure, we have two datasets from the source project and the target

project with homogeneous feature sets. Each row and column of a

dataset indicates a alarm and a PVC feature respectively, and the

last column represents the label of each alarm.

We first apply the feature selection technique to the source

project during the feature ranking process. Feature selection, se-

lecting a subset of features using feature evaluator with one search

method, is of great importance to avoid reducing classifier per-

formance because of redundant and irrelevant features. We apply

widely used feature selection techniques to rank the PVC features

in order to find a minimized feature space that preserves the orig-

inal data properties of the source project. After that, selected PVC

features from the source project are matched up to the PVC fea-

tures with similar distribution from the target project.
In the following subsections, we explain the feature ranking and

eature matching in detail.

.4.1. Feature ranking in the source project

According to several benchmark studies of feature selection

echniques (Catal and Diri, 2009; Gao et al., 2011; Xu et al., 2016;

017; Ghotra et al., 2017), the impact of feature selection tech-

iques varies across the trained models, and the overlap of fea-

ures selected by different feature selection techniques is low in

ost cases. Additionally, empirical results (Xu et al., 2016) indicate

hat ranking-based feature selection methods can achieve accept-

ble results with fewer features and less time compared to subset-

ased feature selection methods. Thus, we propose a top ranking-

ased approach to select a PVC subset in the source project. This

pproach adopts the idea of majority voting that combing different

lter-based feature ranking methods and selects top 15% of the PVC

eatures as suggested by Gao et al. (2011) . We utilize six single at-

ribute evaluators implemented in Weka, that is CorrelationAttribu-

eEval, GainRatioAttributeEval, InfoGainAttributeEval, OneRAttributeE-

al, ReliefFAttributeEval and SymmetricalUncertAttributeEval respec-

ively, with Ranker search method to evaluate the PVC features of

he source project.

Fig. 6 presents the flowchart of the proposed approach.

e first conduct experiments under six attribute evaluators

 AE 1 , AE 2 , . . . , AE 6 } for the PVC features in the source project. Each

ttribute evaluator AE i evaluates the worth of the given PVC f and

roduces a label for f from the set of class label { r 1 , r 2 }, where

 1 denotes Selected and r 2 denotes Unselected . Label Selected

eans that f ranks into top 15% of the PVC features in the source

roject. If f is ranked into top 15% of the PVC features by most at-

ribute evaluators, f is labeled to this class. Eq. (2) shows the rule

f class identification for top ranking-based feature selection ap-

roach, where AE
j
i
(f) denotes the output of attribute evaluator AE i

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 7

Fig. 6. Flowchart of top ranking-based feature selection approach.

o

A

3

p

K

t

e

b

t

e

t

t

a

f

m

s

b

s

K

p

t

P

o

g

i

P

t

f

b

T

p

t

t

(

d

T

t

Fig. 7. An example of feature matching between the source and target projects.

t

T

t

(

a

p

4

o

i

4

4

d

(

fl

t

d

4

(

p

m

a

m

c
n class label r j .

E(f) =

{
r 1 , if

∑ 6
i =1 AE 1

i
(f) ≥ 3 ;

r 2 , otherwise .
(2)

.4.2. Feature matching between the source and target projects

To match PVC features between the source and target

roject, each source and target PVC pair is evaluated using the

olmogorov-Smirnov test (KS test) coefficient to measure the dis-

ribution similarity. The KS test is one of the most useful and gen-

ral non-parametric two-sample methods that quantifies a distance

etween the empirical distribution functions of two samples. Since

he PVC features extracted from the evaluated projects have differ-

nt distributions and variances, the KS test is a suitable statistical

est to compute a p-value as a matching score for each source and

arget PVC pair, showing the probability of whether two samples

re significantly different or not.

The key idea of feature matching is computing matching scores

or all source and target PVC pairs. We used the kolmogorovS-

irnovTest implemented in the Apache Commons Math library 1 , a

tatistics package providing frameworks and implementations for

asic statistical tests, to compute the matching score. The matching

core is denoted by p (S i , T j), which is a p-value computed by the

S test of PVC i from the source project and PVC j from the target

roject. The value of p (S i , T j) tends to be zero when two PVC fea-

ures are significantly different. Then, we remove poorly matched

VC pairs whose matching score is less than a given cutoff thresh-

ld. From the remaining source and target PVC pairs, we select a

roup of matched PVC pairs that has the maximum weights, that

s, whose sum of matching scores is the largest, without duplicated

VC features.

To exemplify, Fig. 7 illustrates a sample matching. There are

wo source PVC features (PVC 1 and PVC 18) and three target PVC

eatures (PVC 4 , PVC 15 and PVC 33). Therefore, there are six possi-

le matching PVC pairs, (S 1 , T 4), (S 1 , T 15), (S 1 , T 33), (S 18 , T 4), (S 18 ,

 15), and (S 18 , T 33). The matching scores of all PVC pairs are com-

uted by the KS test and shown in the rectangles. For example,

he matching score between PVC 1 and PVC 4 is p(S 1 , T 4) = 1 . 0 . If

he cutoff threshold is 0.5, the matching PVC pairs (S 1 , T 15) and

 S 18 , T 4) will be excluded. Thus, we can only consider the can-

idate matching PVC pairs (S 1 , T 4), (S 1 , T 33), (S 18 , T 15), and (S 18 ,

 33) in this example. After applying the cutoff threshold, there are

hree groups of matched PVC pairs without duplicated PVC fea-
1 http://commons.apache.org/proper/commons-math/ .

f

a

a

ures, that is, {(S 1 , T 4), (S 18 , T 15)}, {(S 1 , T 4), (S 18 , T 33)} and {(S 1 ,

 33), (S 18 , T 15)}, respectively. The sum of matching scores of these

hree groups is respectively 1.7 (= 1.0+0.7), 1.8 (= 1.0+0.8) and 1.6

 = 0.9+0.7). Thus, we select the second group {(S 1 , T 4), (S 18 , T 33)}

s the set of matched PVC pairs for the given source and target

rojects with the cutoff threshold of 0.5 in this example.

. Experimental setup

We conduct several experiments to evaluate the performance

f the proposed PVC features in both WPDI and CPDI. Our exper-

ments are all run on a 3.7 GHz Intel Core i3-6100 machine with

GB RAM.

.1. Static analysis tool

DTS (Yang et al., 2008) is a defect pattern-driven tool. Each

efect pattern is defined using a defect pattern state machine

DPSM). A DPSM can be represented as a triple (S, T, C), in which:

• S is a state set and S = { S start , S error , S end , S other } , where S start de-

notes the initial state, S error denotes the error state, S end denotes

the end state and S other denotes other intermediate states,
• T is a state transition set, which is defined as T : S × C → S ,
• C is a transition condition set, which denotes the state transi-

tion conditions.

DTS proposes the interval computation technique in control-

ow and data-flow analysis, of which the purpose is to compute

he state of DPSM. If a DPSM is transited to an error state then a

efect is reported by DTS.

.2. Datasets and ground truth building

Our experiments are conducted on eight open-source projects

listed in Table 2 with full description). The selection of these

rojects is based on their sizes (they are large enough to have

any SA alarms), diversity (they cover a wide range of function-

lity) and the fact that they have source code repositories which

akes the feature extraction process easier. The sixth column indi-

ates the number of alarms of the evaluated projects, which range

rom 45 to 695. The defective rates of the evaluated projects have

 minimum value of 25.5% and a maximum value of 71.1%, which

re listed in the seventh column.

http://commons.apache.org/proper/commons-math/

8 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

Table 2

Basic facts about the evaluated projects.

Project Release Description Language Size (KLoC) # of Alarms Defective Rate (%)

Juliet a 1.3 A collection of test cases from SARD suites C 11 695 59.4

antiword b 0.37 A free MS Word reader for Linux C 20 45 71.1

spell c 1.0 A spell checking program C 2 62 66.1

sphinxbase d 0.3 A speech Recognition toolkit C 28 141 33.3

uucp e 1.07 A complete UUCP package C 53 677 70.8

lucene-solr f 4.6.1 A text search engine Java 283 103 27.2

phoenix g 4.4 A client-embedded JDBC driver Java 99 51 25.5

poi h 3.10 A library to access OOXML format files Java 410 92 57.6

a https://samate.nist.gov/SRD/testsuite.php
b https://launchpad.net/ubuntu/+source/antiword/0.37-11
c https://ftp.gnu.org/gnu/spell/
d https://sourceforge.net/projects/cmusphinx/files/sphinxbase/
e http://www.airs.com/ian/uucp.html
f https://github.com/apache/lucene-solr
g http://phoenix.apache.org/source.html
h https://github.com/apache/poi/

m

o

w

4

t

t

t

p

a

t

S

a

r

e

a

p

o

(

H

t

c

m

t

W

t

p

t

t

u

n

p

g

e

t

s

f

l

fi

u
To evaluate the proposed approach, we need to prepare the ex-

perimental dataset 2 for each evaluated project. In detail, we need

to extract the values of all PVC features listed in Table 1 . We im-

plement our own tool embedded in DTS to extract the values for

each PVC feature using the following steps:

• Obtain the source code files of a specific release of the eval-

uated project by using git checkout from its Git repository or

downloading from the website.
• Compile the source code files using DTS.
• Generate intraprocedural paths via CFG for the reported SA

alarms (with details described in Section 3.2.1).
• Extract the value of PVC features based on the generated paths

(with details described in Section 3.2.2).

Since the SA tools would produce false positives, we should

firstly classify the reported alarms as actionable and unactionable

accurately to build the ground truth. In this paper, we use the

manual inspection results from previous studies or downloaded

websites as labels for the datasets. Specifically, as for the Juliet

dataset, we use the manual inspection results commented on the

downloaded source code files as ground truth, and the manual in-

spection results from our previous work (Zhang et al., 2020) are

used as ground truth for the other four C projects. As for the

three Java projects, we use the labeled warning information from

(Wang et al., 2018) as ground truth.

4.3. Machine learning classifiers

Weka contains a series of machine learning algorithms for clas-

sification tasks with understandable output results to developers.

We select 12 classification algorithms from six categories imple-

mented in Weka for model building: decision tree (J48 and LMT),

Bayes classifier (NaiveBayes (NB) and BayesNet (BN)), instance-

based algorithm (IBk and KStar), rule-based algorithm (PART and

JRip), function-based model (SimpleLogistic (SL) and SMO) and en-

semble learning method (Vote and RandomForest (RF)). The se-

lection of these classifiers is based on their popularity and di-

versity (Herbold et al., 2018; Tantithamthavorn et al., 2019; Hos-

seini et al., 2019). Additionally, parameter tuning of machine learn-

ing classifiers usually requires a lot of expertise and effort. Thus,

we use the default parameters for all classifiers in Weka. Accord-

ing to the empirical results presented in Fig. 4a(a) and b(i) from

(Tantithamthavorn et al., 2019), the selected classifiers tend to ro-

bust to parameter settings when considering the AUC and MCC
2 https://github.com/WayYuZhang/SoftwareDefectIdentification/tree/master/

Dataset .

a

a

t

1
etrics. That is to say, they may have negligible to small impact

n the performance improvement of defect identification models

hen parameter optimization is applied.

.4. Experimental design

For WPDI, datasets from the same project are split into the

raining set and the test set. When building models, we carry out

enfold cross-validation to evaluate the effectiveness of classifica-

ion. In cross-validation, datasets are randomly split into ten ap-

roximately equal subsets, and nine of the subsets are used to train

 model and the last subset to test. The process is repeated ten

imes in order that each of the ten subsets would be tested once.

ince randomness would occur inevitably in splitting datasets and

ffect the prediction performance (Arcuri and Briand, 2011), we

epeat the tenfold cross-validation 100 times (i.e., 10 0 0 tests) for

ach model and report the average prediction results. To evalu-

te the performance of PVC features in WPDI, we compare our

roposed PVC features with traditional features. The first baseline

f traditional features consists of 19 widely used common metric

CM) features, including LOC-based metrics, McCabe metrics and

alstead metrics, etc. Table 3 shows an overview of the CM fea-

ures used in this paper, and the work from (Menzies et al., 2007)

ontains the full definition of these features. In order to have ho-

ogeneous feature sets between different programming languages,

he object-oriented based CK metrics are excluded in this paper.

e use Prest (Kocaguneli et al., 2009), an intelligent open-source

ool for software metrics extraction, to collect CM features for ex-

erimental analysis. The second baseline of traditional features is

he VC features used in (Zhang et al., 2020).

For CPDI, we build a prediction model using all instances from

he source project and predict instances from the target project by

sing the built model. Unlike WPDI, the evaluation of CPDI does

ot involve any randomness, because all instances from the source

roject constitute the training set and all instances from the tar-

et project constitute the test set. We perform the evaluation of

ach project pair once. Additionally, we choose a cutoff of 0.05 for

he KS test, which is a commonly accepted significance level in the

tatistical test. To evaluate the performance of our proposed trans-

er learning approach FRM-TL, we compare FRM-TL to three base-

ine approaches. We conduct CPDI without transfer learning as the

rst baseline (CPDI-ALL). That is to say, all the PVC features are

sed to build the defect identification models between the source

nd target datasets. As the second baseline, we include the CPDP

pproach proposed by He et al. (2014) , which uses 16 distribu-

ion characteristics of values of each instance with all features. The

6 distribution characteristics are mode, median, mean, harmonic

https://samate.nist.gov/SRD/testsuite.php
https://launchpad.net/ubuntu/+source/antiword/0.37-11
https://ftp.gnu.org/gnu/spell/
https://sourceforge.net/projects/cmusphinx/files/sphinxbase/
http://www.airs.com/ian/uucp.html
https://github.com/apache/lucene-solr
http://phoenix.apache.org/source.html
https://github.com/apache/poi/
https://github.com/WayYuZhang/SoftwareDefectIdentification/tree/master/Dataset

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 9

Table 3

Overview of the selected CM features.

Category Feature

Size loc_total

McCabe cyclomatic_complexity, cyclomatic_density

Halstead num_operators, num_operands, num_unique_operators, num_unique_operands, halstead_length, halstead_volume,

halstead_level, halstead_difficulty, halstead_effort, halstead_time

Miscellaneous branch_count, call_pairs, condition_count, decision_count, decision_density, parameter_count

m

q

o

w

s

T

p

d

a

o

p

K

m

t

g

2

t

o

f

t

f

n

(

(

4

i

c

p

t

m

a

e

4

b

o

a

t

t

a

n

a

c

b

P

R

F

M

w

t

f

p

f

d

c

r

a

m

i

4

i

A

a

p

o

p

A

5

p

s

5

W

f

b

p

o

5

e

1

e

b

c

V

t
ean, minimum, maximum, range, variation ratio, first quartile, third

uartile, interquartile range, variance, standard deviation, coefficient

f variance, skewness , and kurtosis (He et al., 2014). In this paper,

e extract the 16 distribution characteristics from the PVC feature

et as features (CPDI-IFS) to build the defect identification models.

he third baseline is the classic transferable feature learning ap-

roach TCA (Pan et al., 2011), which maps the source and target

atasets onto the same subspace while minimizing data difference

nd maximizing data variance. In this paper, we implement our

wn version of TCA (CPDI-TCA) based on the supplied source code

rovided by its author (Pan et al., 2011).

To compare our approach to baselines, we adopt the Scott-

nott Effect Size Difference (ESD) test in this paper, which is a

ean comparison approach that leverages a hierarchical clustering

o partition the set of treatment means into statistically distinct

roups with non-negligible difference (Tantithamthavorn et al.,

019). We used the sk_esd function implemented in the Scot-

KnottESD

3 R package to compare the identification performance

f the approaches we examined. Additionally, to measure the ef-

ect size of results among baselines and our approach, we compute

he Cohen effect size estimate d by using the checkDifference
unction implemented in the ScottKnottESD R package. The mag-

itude is accessed using the thresholds as follows: negligible

 d ≤ 0.2), small (0.2 < d ≤ 0.5), medium (0.5 < d ≤ 0.8), and large

 d > 0.8).

.5. Evaluation metrics

Since the software defect datasets usually suffer from the class

mbalance problem, performance metrics such as precision and re-

all, which are highly affected by defective ratios, may be not ap-

ropriate for defect identification tasks. To measure the identifica-

ion performance in this paper, the following three comprehensive

etrics are adopted to evaluate model prediction results, which

re commonly used in the previous studies (Nam et al., 2018; Li

t al., 2018; Herbold et al., 2018; Tantithamthavorn et al., 2019).

.5.1. Indicators derived from confusion matrix

The measurement of model prediction performance is usually

ased on the analysis of a confusion matrix. This matrix consists

f four numbers: 1) true positive (TP): the number of predicted

ctionable alarms that are truly actionable; 2) false negative (FN):

he number of predicted unactionable alarms that are actually ac-

ionable; 3) false positive (FP): the number of predicted actionable

larms that are actually unactionable; 4) true negative (TN): the

umber of predicted unactionable alarms that are truly unaction-

ble. The two metrics, F2-measure (F2) and Matthews correlation

oefficient (MCC), are derived from the confusion matrix. Here is a

rief introduction:

 recision (P) =

T P

T P + F P
(3)

ecal l (R) =

T P

T P + F N

(4)
3 https://github.com/klainfo/ScottKnottESD .

fi

w
 β =

(1 + β2) × P × R

β2 × P + R

(5)

CC =

T P × T N − F P × F N √

(T P + F P) × (T P + F N) × (T N + F P) × (T N + F N)
(6)

Eq. (5) shows the general formula of F-measure, which is a

eighted harmonic mean value of precision (P) and recall (R). In

his paper, we use the F2-measure (β = 2) for evaluating the per-

ormance of defect identification models, which has a greater im-

act on recall. The higher is the F2-measure, the better is the per-

ormance.

MCC measures the correlation between the observed and pre-

icted classifications by taking into account all components of the

onfusion matrix, which can be calculated as shown in Eq. (6) . Its

eturn value is on a scale [−1 , 1] , where values close to 1 indicate

 perfect prediction, values close to −1 represent total disagree-

ent between observation and prediction, and values close to 0

ndicate no better than random prediction.

.5.2. Area under ROC curve

The third metric is the area under ROC curve (AUC), which

s defined using the receiver operating characteristic (ROC). The

UC is known as a useful metric for comparing different models

nd widely used because AUC is unaffected by the class imbalance

roblem as well as being independent from the prediction thresh-

ld (Tantithamthavorn et al., 2019). The higher AUC indicates better

rediction performance of the defect identification model, and the

UC of 0.5 means the performance of a random predictor.

. Results and analysis

This section presents the experimental results. We focus on the

erformance of our proposed PVC features and answer the re-

earch questions raised in Section 1 .

.1. Answering RQ1

To answer this question, we use different features to build

PDI models to compare the impact of three sets of features: CM

eatures, VC features and PVC features. The first two are used as

aselines. In total, we conduct 96 sets of WPDI comparison ex-

eriments (8 datasets × 12 machine learning classifiers), each

f which uses instances of the same project.

.1.1. Results for RQ1

Table 4 presents the mean F2, MCC and AUC values for each

valuated project when using the three sets of features across the

2 machine learning classifiers. The results of F2, MCC and AUC for

ach evaluated project are shown by row. If there are better results

etween CM features and PVC features, the higher values of each

omparison experiment are in bold as shown in Table 4 . Between

C features and PVC features, the higher values are underlined in

he table. To exemplify, by using the 12 machine learning classi-

ers for antiword , the mean AUC of using PVC features is 0.935,

hile the mean AUC is only 0.702 with the first baseline of using

https://github.com/klainfo/ScottKnottESD

10 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

Table 4

Comparison results of within-project defect identification on the evaluated projects under 3 different evaluation metrics.

Project F2 MCC AUC

CM VC PVC CM VC PVC CM VC PVC

Juliet 0.764(4.749, L) 0.960(6.163, L) 0.993 0.091(19.677, L) 0.913(2.485, L) 0.976 0.553(17.706, L) 0.982(1.123, L) 0.995

antiword 0.776(2.181, L) 0.908(1.217, L) 0.950 0.344(4.340, L) 0.658(1.369, L) 0.800 0.702(4.427, L) 0.846(1.707, L) 0.935

spell 0.848(1.995, L) 0.917 (-0.443, S) 0.907 0.603(1.168, L) 0.627(0.553, M) 0.679 0.853(0.454, S) 0.843(0.545, M) 0.881

sphinxbase 0.606(1.203, L) 0.705(0.850, L) 0.825 0.516(1.163, L) 0.583(1.083, L) 0.759 0.784(1.241, L) 0.809(1.274, L) 0.918

uucp 0.916(0.202, S) 0.920(0.143, N) 0.929 0.594(1.462, L) 0.624(1.377, L) 0.805 0.846(1.687, L) 0.842(1.335, L) 0.943

lucene-solr 0.464(3.315, L) 0.607(4.097, L) 0.878 0.313(6.945, L) 0.478(4.547, L) 0.857 0.721(3.937, L) 0.792(3.443, L) 0.953

phoenix 0.299(0.766, M) 0.217(1.295, L) 0.399 0.143(1.584, L) 0.047(2.115, L) 0.406 0.569(1.558, L) 0.547(1.656, L) 0.747

poi 0.771(1.550, L) 0.819(1.945, L) 0.888 0.566(2.060, L) 0.553(2.378, L) 0.740 0.802(1.801, L) 0.796(2.177, L) 0.907

Fig. 8. The Scott-Knott ESD ranking of baselines and pvc features under 3 different evaluation metrics.

t

d

d

CM features, and the mean AUC is 0.846 with the second baseline

of using VC features. For this comparison, the only difference lies

in the feature sets used for model building, meaning that the same

classification algorithms, the same parameters and the same eval-

uated project are used.

The values in parentheses in Table 4 show Cohen’s d and its

magnitude for the effect size among baselines and PVC features,

where N denotes negligible, S denotes small, M denotes medium,

and L denotes large. The positive values of Cohen’s d indicate that

the PVC features improve the baseline in terms of the effect size.

For example, the Cohen’s d of mean F2 values between CM fea-

tures and PVC features for Juliet is 4.749 and its magnitude is L ,
namely, the PVC features outperform the CM features in Juliet
with the large magnitude of the effect size when considering the

mean F2.

Fig. 8 presents the Scott-Knott ESD test of the mean F2, MCC

and AUC results (across all projects and classifiers) using box plots.

The ranking results of different evaluation metrics are partitioned

by the solid vertical lines in black, while the ranking results of dif-

ferent feature sets are grouped by the solid vertical lines in white.

The bottom and top of the boxes indicates the first and third quar-

tiles respectively, while the solid horizontal line in a box indicates
he median value in each performance distribution, and the blue

iamond in a box indicates the mean value in each performance

istribution. Black circles in the figure are outliers.

The following results can be observed from Table 4 and Fig. 8 :

• The PVC features rank into the first group in the Scott-Knott

ESD test of all the three evaluation metrics.
• The PVC features achieve a mean F2 of 0.846, while the CM fea-

tures achieve a mean F2 of 0.681, and the VC features achieve a

mean F2 of 0.754. By comparing the two baselines, the average

improvement in the mean F2 is 24.2% and 12.2% respectively.
• When considering the mean F2 results, the magnitude of Co-

hen’s d values between CM features and PVC features are

medium (M) or large (L) in 7 out of 8 projects (except uucp),
while the PVC features show significantly better results to VC

features in terms of effect size in 75% projects.
• The PVC features achieve a mean MCC of 0.753, while the CM

features achieve a mean MCC of 0.396, and the VC features

achieve a mean MCC of 0.560. By comparing the two baselines,

the average improvement in the mean MCC is 90.2% and 34.5%

respectively.

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 11

Fig. 9. Performance comparison of different classifiers.

5

o

b

f

V

f

t

t

p

p

a

t

c

l

5

i

p

t

n

Table 5

Feature ranking results for the evaluated projects.

Project Selected features

Juliet PVC 1 , PVC 2 , PVC 7 , PVC 29 , PVC 30 , PVC 41

antiword PVC 1 , PVC 2 , PVC 3 , PVC 12 , PVC 33 , PVC 36 , PVC 41

spell PVC 1 , PVC 2 , PVC 7 , PVC 8 , PVC 10 , PVC 15 , PVC 26 , PVC 31 , PVC 44

sphinxbase PVC 1 , PVC 2 , PVC 3 , PVC 5 , PVC 6 , PVC 9 , PVC 10

uucp PVC 2 , PVC 3 , PVC 4 , PVC 6 , PVC 11 , PVC 31 , PVC 34

lucene-solr PVC 2 , PVC 3 , PVC 10 , PVC 12 , PVC 26 , PVC 33 , PVC 35

phoenix PVC 2 , PVC 13 , PVC 14 , PVC 17 , PVC 27 , PVC 28 , PVC 34 , PVC 35

poi PVC 3 , PVC 4 , PVC 5 , PVC 10 , PVC 11 , PVC 14 , PVC 28 , PVC 33 , PVC 34

t

t

5

p

T

e

(

t

P

v

b

a

m

a

p

i

K

≤

w

b

m
• The PVC features outperform the two baselines in all targets

with the medium (M) or large (L) magnitude of the effect size

in terms of the mean MCC results.
• The PVC features achieve a mean AUC of 0.910, while the CM

features achieve a mean AUC of 0.729, and the VC features

achieve a mean AUC of 0.807. By comparing the two baselines,

the average improvement in the mean AUC is 24.8% and 12.8%

respectively.
• When considering the mean AUC results, the magnitude of Co-

hen’s d values between the two baselines and PVC features are

large (L) in 7 out of 8 projects (except spell). In other words,

the PVC features improve the two baselines in most targets in

terms of effect size.

.1.2. Performance in different machine learning classifiers

In Fig. 9 , we present the identification performance (in terms

f the mean AUC) of different machine learning classifiers using

ox plots. The red, blue and yellow box plots represents the per-

ormance distributions of selected classifiers when using the CM,

C and PVC features respectively.

We can observe that the RF classifier measures up the best per-

ormance across all evaluated projects. This is reasonable because

he RF classifier is an ensemble learning method which combines

he prediction result of numerous single classifier. However, the

erformance of the BN classifier heavily depends on the evaluated

rojects, which varies significantly over different projects. On aver-

ge, the selected 12 machine learning classifiers have fairly consis-

ent performance when using PVC features, and the improvement

ompared to the two baselines is not tied to a particular machine

earning classifier.

.1.3. Answer to RQ1

Overall, our proposed PVC features are effective in automatically

dentifying SA alarms, which improve the performance of within-

roject defect identification. The comparison results indicate that

he PVC features outperform the two baselines with statistical sig-

ificance, namely, we can enhance the WPDI performance by using
he PVC features extracted from the generated paths instead of the

raditional features.

.2. Answering RQ2

To answer this question, we first conduct the feature ranking

rocess for each evaluated project as described in Section 3.4.1 .

able 5 presents a brief overview of the selected PVC features for

ach project. The number of selected PVC features varies from 6

 Juliet) to 9 (spell and poi). In total, 28 out of 47 PVC fea-

ures are selected for the evaluated projects. Based on the selected

VC features in Table 5 , we can easily find out that the features

ary significantly over different projects. Furthermore, the LOC-

ased features (PVC 1 , PVC 2 and PVC 3) are contained in all evalu-

ted projects, which implies that the number of source code state-

ents at different levels are predictive of the actionability of the

larm.

Then, the KS test is utilized to select a group of matched PVC

airs between the source and target project, which has the max-

mum matching scores. Since we choose a cutoff of 0.05 for the

S test, we remove matched PVC pairs with the matching score

0.05 and build an identification model using matched PVC pairs

ith the score > 0.05. The number of matched PVC pairs varies

y each identification combination. For example, the number of

atched PVC pairs is one in sphinxbase ⇒ lucene-solr (the

12 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

Table 6

Comparison results of cross-project defect identification on the evaluated projects under

3 different evaluation metrics.

F2 CPDI-ALL CPDI-IFS CPDI-TCA FRM-TL

Juliet 0.594 (-0.775, M) 0.596 (-0.635, M) 0.571 ∗(-0.773, M) 0.469

antiword 0.644 (-0.107, N) 0.569(0.300, S) 0.554(0.356, S) 0.625 ∗

spell 0.453(1.814, L) 0.713(0.619, M) 0.517(1.413, L) 0.778 ∗

sphinxbase 0.540 (-0.383, S) 0.241(1.990, L) 0.360(0.656, M) 0.467 ∗

uucp 0.612(0.497, S) 0.706 (-0.033, N) 0.591(0.591, M) 0.700 ∗

lucene-solr 0.462 (-1.772, L) 0.177 (-0.126, N) 0.394 ∗(-1.891, L) 0.147

phoenix 0.331 (-1.108, L) 0.206 (-1.442, L) 0.228 ∗(-1.681, L) 0.095

poi 0.310(1.548, L) 0.427(0.802, L) 0.508(0.418, S) 0.577 ∗

MCC CPDI-ALL CPDI-IFS CPDI-TCA FRM-TL

Juliet 0.071 (-0.465, S) -0.012(0.064, N) -0.074(0.429, S) -0.003 ∗

antiword 0.091(0.039, N) 0.029(0.353, S) -0.118(1.135, L) 0.104 ∗

spell 0.092(0.170, N) 0.111(0.084, N) 0.083(0.201, S) 0.127 ∗

sphinxbase 0.060(0.087, N) 0.001(0.327, S) 0.017(0.254, S) 0.081 ∗

uucp 0.014(0.969, L) 0.030(1.366, L) -0.060(1.161, L) 0.191 ∗

lucene-solr -0.027 (-0.012, N) -0.010 (-0.073, N) 0.006 ∗(-0.189, N) -0.028

phoenix 0.064 (-0.459, S) 0.047 (-0.176, N) -0.107(0.705, M) 0.013 ∗

poi 0.009 (-0.139, N) 0.035 (-0.286, S) -0.044(0.102, N) -0.017 ∗

AUC CPDI-ALL CPDI-IFS CPDI-TCA FRM-TL

Juliet 0.504 (-0.291, S) 0.492 (-0.175, N) 0.459(0.100, N) 0.469 ∗

antiword 0.542(0.191, N) 0.540(0.177, N) 0.416(1.043, L) 0.564 ∗

spell 0.542 (-0.057, N) 0.563 (-0.217, S) 0.528(0.033, N) 0.533 ∗

sphinxbase 0.514(0.247, S) 0.516 (0.255, S) 0.465(0.556, M) 0.552 ∗

uucp 0.498(0.696, M) 0.514(0.467, S) 0.456(0.760, M) 0.575 ∗

lucene-solr 0.496(0.168, N) 0.483(0.297, S) 0.503(0.109, N) 0.518 ∗

phoenix 0.543(0.188, N) 0.498(0.198, N) 0.395(0.990, L) 0.519 ∗

poi 0.508(0.201, S) 0.508(0.211, S) 0.484(0.349, S) 0.531 ∗

T

A

symbol ⇒ is used to denote a identification combination) while

that is seven in poi ⇒ phoenix . We put all the matched PVC

pairs of each identification combination in the online appendix. 4

5.2.1. Results for RQ2

We conduct 480 sets of CDPI experiments (40 identification

combinations × 12 machine learning classifiers). Each experiment

takes two different evaluated projects as one identification com-

bination, while the source project is as the training set and the

target project is as the test set. We compare our proposed CPDI

approach FRM-TL to three baselines: CPDI-ALL, CPDI-IFS and CPDI-

CA. Table 6 shows the mean F2, MCC and AUC values of the four

CPDI approaches by each source project across all target projects

and classifiers. The results of F2, MCC and AUC for each source

project are shown by row. If there are better results between CPDI-

LL and our approach, the higher values of each comparison exper-

iment are in bold as shown in Table 6 . Between CPDI-IFS and our

approach, the higher values are underlined in the table. Between

CPDI-TCA and our approach, the higher values are shown with an

asterisk (∗).

The values in parentheses in Table 6 show Cohen’s d and its

magnitude for the effect size among baselines and FRM-TL. If a

Cohen’s d is positive, FRM-TL improves the baseline in terms of

the effect size. To exemplify, the Cohen’s d of mean F2 values be-

tween CPDI-ALL and FRM-TL for spell is 1.814 and its magni-

tude is L , that is, FRM-TL outperforms CPDI-ALL in spell with the

large magnitude of the effect size when considering the mean F2.

Furthermore, we present the Scott-Knott ESD test of the mean F2,

MCC and AUC results (including all CPDI experiments) using box

plots in Fig. 10 .

The followings are the observations of the results from

Table 6 and Fig. 10 :

• Our proposed approach FRM-TL ranks into the first group in the
Scott-Knott ESD test of all the three evaluation metrics.

4 https://github.com/WayYuZhang/SoftwareDefectIdentification/tree/master/

ExperimentalResult .

5

p

⇒
• FRM-TL achieves a mean F2 of 0.482, which respectively outper-

forms CPDI-IFS and CPDI-TCA by 6.2% and 3.7%. However, FRM-

TL does not lead to better with statistical significance but com-

parable against CPDI-ALL. There are 5 out of 8 source projects

show worse results against CPDI-ALL, which is mainly con-

centrated in the identification combinations from the source

projects lucene-solr and phoenix . In the next subsection,

we discuss and analyze why these results could happen.
• When considering the mean F2 results, the magnitude of Co-

hen’s d values between CPDI-ALL and FRM-TL are positive in

3 out of 8 projects, while FRM-TL shows better or comparable

results to CPDI-IFS in terms of effect size in 75% projects (ex-

cept Juliet and phoenix), and the 5 out of 8 source projects

(antiword , spell , sphinxbase , uucp and poi) lead to

better or comparable results against CPDI-TCA.
• FRM-TL achieves a mean MCC of 0.059, while CPDI-ALL achieves

a mean MCC of 0.047, CPDI-IFS achieves a mean MCC of 0.029,

and CPDI-TCA achieves a mean MCC of -0.037. Overall, FRM-

TL outperforms the baselines with statistical significance when

considering results from all CPDI experiments.
• When considering the mean MCC results, FRM-TL shows better

with statistical significance or comparable results against the

baselines in all source projects in terms of effect size.
• FRM-TL achieves a mean AUC of 0.533, while CPDI-ALL achieves

a mean AUC of 0.518, CPDI-IFS achieves a mean AUC of 0.514,

and CPDI-TCA achieves a mean AUC of 0.463. By comparing the

three baselines, the average improvement in the mean AUC is

2.9%, 3.7% and 15.1% respectively.
• When considering the mean AUC results, the magnitude of Co-

hen’s d values between the three baselines and FRM-TL are pos-

itive in 20 out of 24 targets, namely, FRM-TL improves the three

baselines in most targets in terms of effect size.

.2.2. Evaluation of the matched PVC features

As shown in Table 6 , identification combinations in some source

rojects have very poor CPDI performance. In combination poi
 phoenix , all the evaluation metric results are lower than the

https://github.com/WayYuZhang/SoftwareDefectIdentification/tree/master/ExperimentalResult

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 13

Fig. 10. The Scott-Knott ESD ranking of baselines and FRM-TL under 3 different evaluation metrics.

Fig. 11. Distribution of the matched PVC Pairs in poi ⇒ phoenix .

m

t

m

b

P

p

p

t

m

T

r

f

o

m

t

o
ean values of poi . Thus, we discuss this identification combina-

ion as a representative example.

In Fig. 11 , we use box plots to show the distributions of all

atched PVC pairs in combination poi ⇒ phoenix . The seven

ox plots on the left part represent distributions of the matched

VC features from the source project poi while the seven box

lots on the right part represent those from the target project

hoenix . Each scale of the X-axis represents a PVC feature, and

here is a correspondence between their positions according to the
atched PVC pairs of combination poi ⇒ phoenix , that is (S 3 ,

 3), (S 4 , T 39), (S 5 , T 29), (S 10 , T 12), (S 11 , T 10), (S 14 , T 36) and (S 28 , T 7)

espectively. As shown in Fig. 11 , all the five PVC pairs have similar

eature distributions.

Since the PVC pairs are matched based on the similarity

f source and target feature distributions, our proposed FRM-TL

odel is supposed to achieve better CPDI performance compared

o the baseline approach. However, when the different tendencies

f defect-proneness occur between the source and target PVC fea-

14 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

Fig. 12. Distribution of the features in PVC Pair (S 3 , T 3).

5

s

C

r

t

t

a

t

a

F

t

r

s

i

h

i

m

o

b

t

5

i

b

t

i

6

tures, our proposed approach may not produce reasonable identifi-

cation performance. Fig. 12 explains how the defect-prone tenden-

cies differ between the source and target features of PVC pair (S 3 ,

T 3) and why the identification combination poi ⇒ phoenix has

a poor result. The gray, black and white box plots represents the

distributions of matched PVC features in all, true-labeled and false-

labeled instances respectively. The three box plots on the left part

represent the distributions of the source PVC feature while those

on the right part represent the distributions of the target PVC fea-

ture.

Interestingly, the two matched PVC features are both File_LOC ,

which might be considered as a matching of two similar features.

As shown in Fig. 12 , the median value of true-labeled instances

in the source PVC feature is higher than that of false-labeled in-

stances, indicating that a defect identification model would label

an instance as actionable when the feature value of the instance

is more than 800 in the case of project poi . However, the me-

dian value of true-labeled instances in the target PVC feature is

lower than that of false-labeled instances so that a lower feature

value would lead to a higher defect-proneness result in project

phoenix . This inconsistent tendency of defect-proneness in the

matched PVC pairs would harm the identification performance

even if the two matched features within the PVC pair are similar.

We regard this kind of matching as a noisy output of the feature-

matching process, which could also be discovered in other identi-

fication combinations that cannot achieve reasonable CPDI perfor-

mance.

As observed, a defect identification model using the matched

PVC pairs that have a consistent defect-prone tendency could

achieve a high F-measure result. However, filtering out the noisy

feature-matching pairs is a challenging task as the instances in

the test set are not labeled in advance. Thus, designing a filter for

removing the noisy matching will remain as future work, which

is helpful for enhancing the performance of defect identification

models.

l

t

.2.3. Performance in different matching score cutoff thresholds

Additionally, we apply different cutoff thresholds for matching

cores (0.05 and 0 . 10 , 0 . 20 , . . . , 0 . 90) to observe the differences in

PDI performance. Fig. 13 presents the mean F2, MCC and AUC

esults (across all identification combinations and classifiers) in

erms of different cutoff thresholds. The horizontal axis represents

he cutoff thresholds used in this paper.

According to the statistics from Fig. 13 , the FRM-TL model with

 cutoff of 0.90 could achieve better CPDI performance compared

o those with other cutoff thresholds. By comparing the result

chieved by the cutoff 0.05, the average improvement in the mean

2, MCC and AUC is respectively 1.7%, 30.5% and 1.0%. However,

here are fluctuations when the cutoff threshold increased. These

esults were somewhat expected to have in mind that, as de-

cribed in Section 5.2.2 , some noisy outputs of the feature match-

ng process might not be filtered out if their matching scores are

igher than the cutoff threshold, which is not helpful for improv-

ng the CPDI performance. Overall, we can easily observe that the

ean evaluation metric values are gradually improved as the cut-

ff threshold increased. This means some negative PVC pairs can

e filtered out when a cutoff threshold increased, thus improving

he CPDI performance of our proposed approach.

.2.4. Answer to RQ2

To summary, the two-stage transfer learning approach FRM-TL

s superior in identifying SA alarms from new projects than the

aseline approaches in most cases, that is, our proposed PVC fea-

ures can achieve reasonable performance in cross-project defect

dentification.

. Threats to validity

Three main threats to validity in this paper, that is, external va-

idity, internal validity and construct validity, respectively, are illus-

rated as follows.

Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585 15

Fig. 13. Performance comparison in different cutoff thresholds.

6

p

s

m

B

w

u

p

6

n

o

e

e

n

c

s

l

6

i

w

a

fi

t

f

m

p

s

7

b

p

S

s

P

t

e

c

l

r

h

p

t

y

p

t

s

a

a

p

t

j

s

t

W

l

fi

a

D

c

i

t

C

t

i

p

.1. External validity

The principal threat to external validity is that the evaluated

rojects in this paper may not be of enough generalization for all

oftware projects. As a result, projects exclude in the eight projects

ight yield better or worse performance based on our approach.

ut additional running of our proposed model on other projects

ill minimize this threat to validity. Since our model is only eval-

ated on open-source projects, its performance on closed-source

rojects is unknown.

.2. Internal validity

For our paper, dataset preparation is the main concern of inter-

al validity. Oversights of manual inspection could invalidate a few

f the model results. Multiple examination by different develop-

rs will minimize this threat to internal validity. Furthermore, our

valuated benchmark consists of 1866 reported alarms which may

ot be large enough to train defect identification models with high

onfidence. We repeated the experiments using different random

eeds to reduce the randomness that might be caused by having

imited data.

.3. Construct validity

Firstly, since we use the default parameters for machine learn-

ng classifiers in Weka, the experimental results could be improved

hen parameter optimization is applied. Thus, our results may be

ffected by the other parameter tuning machine learning classi-

ers. We remain to conduct experiments with parameter optimiza-

ion as future work. Secondly, we adopt F2-measure, MCC and AUC

or model evaluation in this paper. However, validating prediction

odels in terms of other evaluation measures is also required in

ractice. We will conduct experiments using more evaluation mea-

ures in our future work.

. Conclusion and future work

In order to mitigate the workload of manual inspection caused

y SA tools, this paper presents a machine learning-based ap-

roach for automatically identifying software defects reported by
A tools. Firstly, our approach proposes to leverage path analy-

is techniques to produce a set of fine-grained features, called

VC, from the source code files of the evaluated projects for au-

omated defect identification. Specifically, we utilize CFG to gen-

rate paths for extracting syntactic information from the source

ode files and leverage the extracted PVC features to build machine

earning models for identifying SA alarms automatically. Then, we

aise a two-stage transfer learning approach, called FRM-TL, to en-

ance the performance of cross-project defect identification by ap-

lying the feature ranking and feature matching techniques.

Our empirical results on eight open-source projects show that

he proposed PVC features at variable-level are promising and can

ield significant improvement on both within-project and cross-

roject defect identification. By comparing the two traditional fea-

ures (CM features and VC features), our proposed PVC features re-

pectively improve the within-project defect identification on aver-

ge by 24.2% and 12.2% in F2, 90.2% and 34.5% in MCC, and 24.8%

nd 12.8% in AUC. For cross-project defect identification, our pro-

osed transfer learning approach based on the matched PVC fea-

ure pairs outperforms the baseline approaches in most cases.

In the future, as is mentioned in Section 5.2.2 , there is a ma-

or challenge in filtering out the noisy feature matching. Thus, de-

igning a filter to remove the matched feature pairs with inconsis-

ent defect-prone tendencies is an interesting problem to address.

e also plan to leverage the representation leaning techniques to

earn deep semantic structure automatically from the source code

les for model building, which would be promising to increase the

ccuracy of defect identification.

eclaration Completing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. The authors declare that

hey have no conflict of interest.

RediT authorship contribution statement

Yuwei Zhang: Conceptualization, Methodology, Software, Inves-

igation, Writing - original draft. Dahai Jin: Conceptualization, Val-

dation. Ying Xing: Writing - review & editing. Yunzhan Gong: Su-

ervision, Funding acquisition.

16 Y. Zhang, D. Jin and Y. Xing et al. / The Journal of Systems and Software 166 (2020) 110585

P

Q

R

R

R

T

T

T

W

W

W

W

X

X

X

Y

Y

Z

Z

Y

i

B

o

t

D

t

s

w

Y

s

i

s

Y

C

r

N

n

w

Acknowledgements

This work was supported by the National Natural Science Foun-

dation of China (Nos. U1736110 and 61702044).

Supplementary material

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jss.2020.110585 .

References

Arcuri, A. , Briand, L.C. , 2011. A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In: Proceedings of the 33rd In-

ternational Conference on Software Engineering, pp. 1–10 .
Catal, C. , Diri, B. , 2009. Investigating the effect of dataset size, metrics sets, and

feature selection techniques on software fault prediction problem. Inf. Sci. 179
(8), 1040–1058 .

Fan, G. , Wu, R.X. , Shi, Q.K. , Xiao, X. , Zhou, J.G. , Zhang, C. , 2019. Smoke: scalable

path-sensitive memory leak detection for millions of lines of code. In: Proceed-
ings of the 41st International Conference on Software Engineering, pp. 72–82 .

Flynn, L. , Snavely, W. , Svoboda, D. , VanHoudnos, N.M. , Qin, R. , Burns, J. , Zubrow, D. ,
Stoddard, R. , Marce-Santurio, G. , 2018. Prioritizing alerts from multiple static

analysis tools, using classification models. In: Proceedings of the 1st Interna-
tional Workshop on Software Qualities and Their Dependencies, pp. 13–20 .

Gao, K.H. , Khoshgoftaar, T.M. , Wang, H.J. , Seliya, N. , 2011. Choosing software metrics

for defect prediction: an investigation on feature selection techniques. Softw.,
Pract. Exper. 41 (5), 579–606 .

Ghotra, B. , McIntosh, S. , Hassan, A.E. , 2017. A large-scale study of the impact of fea-
ture selection techniques on defect classification models. In: Proceedings of the

14th International Conference on Mining Software Repositories, pp. 146–157 .
He, P. , Li, B. , Ma, Y.T. , 2014. Towards Cross-Project Defect Prediction with Imbalanced

Feature Sets. CoRR .
Heckman, S. , Williams, L. , 2009. A model building process for identifying action-

able static analysis alerts. In: Proceedings of the 2rd International Conference

on Software Testing Verification and Validation, pp. 161–170 .
Heckman, S. , Williams, L. , 2011. A systematic literature review of actionable alert

identification techniques for automated static code analysis. Inf. Softw. Technol.
53 (4), 363–387 .

Herbold, S. , 2013. Training data selection for cross-project defect prediction. In: Pro-
ceedings of the 9th International Conference on Predictive Models in Software

Engineering, pp. 6:1–6:10 .

Herbold, S. , Trautsch, A. , Grabowski, J. , 2018. A comparative study to benchmark
cross-project defect prediction approaches. IEEE Trans. Softw. Eng. 44 (9),

811–833 .
Hosseini, S. , Turhan, B. , Gunarathna, D. , 2019. A systematic literature review and

meta-analysis on cross project defect prediction. IEEE Trans. Softw. Eng. 45 (2),
111–147 .

Hu, X. , Li, G. , Xia, X. , Lo, D. , Jin, Z. , 2018. Deep code comment generation. In:

Proceedings of the 26th International Conference on Program Comprehension,
pp. 200–210 .

Hu, X. , Li, G. , Xia, X. , Lo, D. , Lu, S. , Jin, Z. , 2018. Summarizing source code with trans-
ferred API knowledge. In: Proceedings of the 27th International Joint Conference

on Artificial Intelligence, pp. 2269–2275 .
Koc, U. , Saadatpanah, P. , Foster, J.S. , Porter, A .A . , 2017. Learning a classifier for false

positive error reports emitted by static code analysis tools. In: Proceedings of

the 1st ACM SIGPLAN International Workshop on Machine Learning and Pro-
gramming Languages, pp. 35–42 .

Koc, U. , Wei, S.Y. , Foster, J.S. , Carpuat, M. , Porter, A .A . , 2019. An empirical assessment
of machine learning approaches for triaging reports of a java static analysis tool.

In: Proceedings of the 12th International Conference on Software Testing, Vali-
dation and Verification, pp. 288–299 .

Kocaguneli, E. , Tosun, A. , Bener, A.B. , Turhan, B. , Caglayan, B. , 2009. Prest: an in-

telligent software metrics extraction, analysis and defect prediction tool. In:
Proceedings of the 21st International Conference on Software Engineering and

Knowledge Engineering, pp. 637–642 .
Le, W. , Soffa, M.L. , 2007. Refining buffer overflow detection via demand-driven

path-sensitive analysis. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, pp. 63–68 .

Li, Z.Q. , Jing, X.Y. , Zhu, X.K. , 2018. Progress on approaches to software defect predic-

tion. IET Softw. 12 (3), 161–175 .
Liu, C. , Yang, D. , Xia, X. , Yan, M. , Zhang, X.H. , 2019. A two-phase transfer learning

model for cross-project defect prediction. Inf Softw. Technol. 107, 125–136 .
Ma, Y. , Luo, G.C. , Zeng, X. , Chen, A.G. , 2012. Transfer learning for cross-company

software defect prediction. Inf. Softw. Technol. 54 (3), 248–256 .
Menzies, T. , Greenwald, J. , Frank, A. , 2007. Data mining static code attributes to learn

defect predictors. IEEE Trans. Softw. Eng. 33 (1), 2–13 .
Muske, T. , Serebrenik, A. , 2016. Survey of approaches for handling static analysis

alarms. In: Proceedings of the 16th International Working Conference on Source

Code Analysis and Manipulation, pp. 157–166 .
Nam, J. , Fu, W. , Kim, S. , Menzies, T. , Tan, L. , 2018. Heterogeneous defect prediction.

IEEE Trans. Softw. Eng. 44 (9), 874–896 .
Nam, J. , Pan, S.J. , Kim, S. , 2013. Transfer defect learning. In: Proceedings of the 35th

International Conference on Software Engineering, pp. 382–391 .
an, S.J. , Tsang, I.W. , Kwok, J.T. , Yang, Q. , 2011. Domain adaptation via transfer com-
ponent analysis. IEEE Trans. Neural Netw. 22 (2), 199–210 .

iu, S.J. , Lu, L. , Cai, Z.Y. , Jiang, S.Y. , 2019. Cross-project defect prediction via trans-
ferable deep learning-generated and handcrafted features. In: Proceedings of

the 31st International Conference on Software Engineering and Knowledge En-
gineering, pp. 431–552 .

aghothaman, M. , Kulkarni, S. , Heo, K. , Naik, M. , 2018. User-guided program reason-
ing using bayesian inference. In: Proceedings of the 39th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, pp. 722–735 .

uthruff, J.R. , Penix, J. , Morgenthaler, J.D. , Elbaum, S. , Rothermel, G. , 2008. Predict-
ing accurate and actionable static analysis warnings: an experimental approach.

In: Proceedings of the 30th International Conference on Software Engineering,
pp. 341–350 .

yu, D. , Jang, J.I. , Baik, J. , 2017. A transfer cost-sensitive boosting approach for
cross-project defect prediction. Softw. Qual. J. 25 (1), 235–272 .

antithamthavorn, C. , McIntosh, S. , Hassan, A.E. , Ihara, A. , Matsumoto, K. , 2015. The

impact of mislabelling on the performance and interpretation of defect predic-
tion models. In: Proceedings of the 37th International Conference on Software

Engineering, pp. 812–823 .
antithamthavorn, C. , McIntosh, S. , Hassan, A.E. , Matsumoto, K. , 2019. The impact

of automated parameter optimization on defect prediction models. IEEE Trans.
Softw. Eng. 45 (7), 683–711 .

urhan, B. , Menzies, T. , Bener, A.B. , Stefano, J.D. , 2009. On the relative value of cross–

company and within-company data for defect prediction. Empir. Softw. Eng. 14
(5), 540–578 .

ang, J.J. , Wang, S. , Wang, Q. , 2018. Is there a “golden” feature set for static warn-
ing identification?: an experimental evaluation. In: Proceedings of the 12th In-

ternational Symposium on Empirical Software Engineering and Measurement,
pp. 17:1–17:10 .

ang, S. , Liu, T.Y. , Tan, L. , 2016. Automatically learning semantic features for de-

fect prediction. In: Proceedings of the 38th International Conference on Soft-
ware Engineering, pp. 297–308 .

atanabe, S. , Kaiya, H. , Kaijiri, K. , 2008. Adapting a fault prediction model to al-
low inter language reuse. In: Proceedings of the 4th International Workshop on

Predictor Models in Software Engineering, pp. 19–24 .
itten, I.H. , Frank, E. , Hall, M.A. , Pal, C.J. , 2016. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann .

u, Z. , Liu, J. , Xia, Z. , Yuan, P.P. , 2017. An empirical study on the equivalence and
stability of feature selection for noisy software defect data. In: Proceedings of

the 29th International Conference on Software Engineering and Knowledge En-
gineering, pp. 191–196 .

u, Z. , Liu, J. , Yang, Z.J. , An, G.G. , Jia, X.Y. , 2016. The impact of feature selection on
defect prediction performance: an empirical comparison. In: Proceedings of the

27th International Symposium on Software Reliability Engineering, pp. 309–320 .

u, Z. , Pang, S. , Zhang, T. , Luo, X.P. , Liu, J. , Tang, Y.T. , Yu, X. , Xue, L. , 2019. Cross
project defect prediction via balanced distribution adaptation based transfer

learning. J. Comput. Sci. Technol. 34 (5), 1039–1062 .
ang, Z.H. , Gong, Y.Z. , Xiao, Q. , Wang, Y.W. , 2008. DTS-A software defects testing

system. In: Proceedings of the 8th International Working Conference on Source
Code Analysis and Manipulation, pp. 269–270 .

oon, J. , Jin, M. , Jung, Y. , 2014. Reducing false alarms from an industrial-strength
static analyzer by SVM. In: Proceedings of the 21st Asia-Pacific Software Engi-

neering Conference, vol. 2, pp. 3–6 .

hang, X.Z. , Gong, Y.Z. , Wang, Y.W. , 2017. Heuristic guided selective path exploration
for loop structure in coverage testing. IJOSSP 8 (2), 59–75 .

Zhang, Y.W. , Xing, Y. , Gong, Y.Z. , Jin, D.H. , Li, H.H. , Liu, F. , 2020. A variable-level au-
tomated defect identification model based on machine learning. Soft Comput.

24 (2), 1045–1061 .
hao, Y.S. , Wang, Y.W. , Gong, Y.Z. , Chen, H.H. , Xiao, Q. , Yang, Z.H. , 2011. STVL:

improve the precision of static defect detection with symbolic three-valued

logic. In: Proceedings of the 18th Asia Pacific Software Engineering Conference,
pp. 179–186 .

uwei Zhang is currently a Ph.D. candidate in the State Key Laboratory of Network-
ng and Switching Technology, Beijing University of Posts and Telecommunications,

eijing. He received his BS degree in network engineering from Beijing University

f Posts and Telecommunications in 2016. His research interests include software
esting and machine learning.

ahai Jin received his Ph.D. degree in information security from Armored Engineer-

ing Institute of the PLA, Beijing, in 2006. He is currently an associate professor in
he State Key Laboratory of Networking and Switching Technology, Beijing Univer-

ity of Posts and Telecommunications, Beijing. His research interests include soft-

are testing and static analysis.

ing Xing received her Ph.D. degree in computer science from the Beijing Univer-
ity of Posts and Telecommunications, in 2014, where she was a Postdoctoral Fellow,

n 2014, and is currently an Assistant Professor with the Automation School. Her re-
earch interests include artificial intelligence and automatic test data generation.

unzhan Gong received his Ph.D. degree in computer science from Institute of
omputing Technology, Chinese Academy of Sciences, Beijing, in 1991. He is cur-

ently a professor and supervisor of doctoral students in the State Key Laboratory of
etworking and Switching Technology, Beijing University of Posts and Telecommu-

ications, Beijing. His research interests include fault tolerant computing and soft-
are testing.

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.jss.2020.110585
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30066-2/sbref0045

	Automated defect identification via path analysis-based features with transfer learning
	1 Introduction
	2 Related work
	2.1 Defect identification using machine learning
	2.2 Cross-project defect prediction using transfer learning

	3 Methodology
	3.1 Data preparation
	3.2 Path analysis-based feature extraction
	3.2.1 Target-oriented path generation algorithm
	3.2.2 Path-variable characteristics

	3.3 Feature vector mapping and postprocessing
	3.4 Feature ranking-matching based transfer learning
	3.4.1 Feature ranking in the source project
	3.4.2 Feature matching between the source and target projects

	4 Experimental setup
	4.1 Static analysis tool
	4.2 Datasets and ground truth building
	4.3 Machine learning classifiers
	4.4 Experimental design
	4.5 Evaluation metrics
	4.5.1 Indicators derived from confusion matrix
	4.5.2 Area under ROC curve

	5 Results and analysis
	5.1 Answering RQ1
	5.1.1 Results for RQ1
	5.1.2 Performance in different machine learning classifiers
	5.1.3 Answer to RQ1

	5.2 Answering RQ2
	5.2.1 Results for RQ2
	5.2.2 Evaluation of the matched PVC features
	5.2.3 Performance in different matching score cutoff thresholds
	5.2.4 Answer to RQ2

	6 Threats to validity
	6.1 External validity
	6.2 Internal validity
	6.3 Construct validity

	7 Conclusion and future work
	Declaration Completing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary material
	References

