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a b s t r a c t 

Cross-project defect prediction (CPDP) is currently a hot research direction in the field of software reli- 

ability. Traditional CPDP methods cannot capture the semantic and contextual information of programs 

by handcrafted features, which affects the prediction performance. In this paper, we apply technology in 

the NLP domain to solve it. We first extract token vectors from the abstract syntax tree (AST) of source 

and target code files, and then convert them into numerical vectors by the word embedding algorithm of 

continuous bag-of-word model (CBOW) as the input of the proposed deep learning model named Gen- 

erative Adversarial Long-Short Term Memory Neural Networks (G-LSTM). The model integrates genera- 

tive adversarial network (GAN) and bidirectional long-short term memory networks (BiLSTM) with atten- 

tion mechanism to automatically learn semantic and contextual features of programs. Specifically, GAN is 

used to eliminate the differences in data distribution between source and target projects, and BiLSTM is 

the feature extraction encoder. We compose five projects of the PROMISE dataset into 20 source-target 

project pairs and conduct comparison experiments on them. The experimental results demonstrate that 

our method outperforms some traditional and state-of-the-art CPDP methods in terms of the evaluation 

metrics of AUC and Acc. 

© 2022 Published by Elsevier B.V. 
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. Introduction 

Modern software written in computational language is becom- 

ng more and more powerful, and its scale and complexity are also 

ncreasing. Defects in computational language programming poses 

 huge threat to the quality and reliability of software. In order 

o ensure software quality, software defect prediction (SDP) is pro- 

osed as an effective means of identifying defects, which not only 

educes the cost and time of software testing, but also ensures that 

he testing team can locate defects more easily [1] . However, the 

rerequisite for SDP implementation is to obtain sufficient histori- 

al data, which is difficult to achieve in the early stage of software 

evelopment. In order to solve this problem, cross-project defect 

rediction (CPDP) is presented [2] , the main concept of which is 

o build the defect prediction model according to the defect infor- 

ation of mature projects (source projects), and then apply it to 

ew projects (target projects) to predict software modules prone 

o defects [3] . 
∗ Corresponding author. 

E-mail addresses: xingying@bupt.edu.cn (Y. Xing), qianxiaomeng@bupt.edu.cn 

X. Qian), guanyu@bupt.edu.cn (Y. Guan), yangbin01@duxiaoman.com (B. Yang), 

uweizhang@pku.edu.cn (Y. Zhang) . 

t

d

a

n

i

ttps://doi.org/10.1016/j.patrec.2022.04.039 

167-8655/© 2022 Published by Elsevier B.V. 
Previous researches on CPDP mainly focus on the use of hand- 

rafted static features to establish the defect prediction model 

y machine learning techniques [4–6] . Those handcrafted features 

ainly represent the macroscopic statistical characteristics of the 

ode, such as the number of lines of code or average method com- 

lexity, etc [7] . The source code of the program contains rich struc- 

ural and semantic information. However, researches using only 

andcrafted features are difficult to capture the complex informa- 

ion from the source code, especially, the contextual and semantic 

etails within methods. Therefore, it is almost impossible for hand- 

rafted features to accurately identify defects when defects appear 

nside methods. This limitation is an important factor affecting the 

rediction accuracy of CPDP. To overcome the limitation, some re- 

earchers [8–11] have introduced techniques from the natural lan- 

uage processing (NLP) domain to CPDP researches to learn mean- 

ngful contextual and semantic features from source code. Specif- 

cally, the core idea is to represent the source code in the form 

f abstract syntax trees (AST) [12] , then treat the nodes on the 

rees as words in text, afterwards, utilize the models in the NLP 

omain to conduct pre-processing on words and extract features, 

nd finally, train classifiers to predict. Commonly used NLP tech- 

iques include language models for pre-processing and deep learn- 

ng models for feature extraction. The former can quantitatively 
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epresent text sequences, such as neural network language model 

NNLM) [13] , word to vector (Word2vec) [14] and FastText [15] . The 

atter has a wide variety, including convolutional neural network- 

ased (CNN-based) models [16] , recurrent neural network-based 

RNN-based) models [17] , attention mechanism-based models [18] , 

ransformer-based models [19] , etc. In [ 8 , 9 ], the comparison ex- 

eriments with traditional machine learning methods can demon- 

trate the superiority of NLP techniques. 

Another factor that affects the performance of CPDP is the dif- 

erence in data distribution between projects [20] . Previously, re- 

earchers assume that the source project and the target project 

how the same distribution. In fact, since the projects developed 

y different teams and companies are always different in terms 

f scale, function and coding standards, the source data of these 

rojects are inevitably different in distribution. In other words, dif- 

erent projects may have different data distributions. In order to 

olve the problem, some researches [4–6] have attempted to ex- 

loit machine learning methods such as transfer learning. Whereas, 

hose traditional machine learning methods are often unable to 

earn complex features, and the design of the loss function is 

omplicated. It has been experimentally demonstrated that gen- 

rative adversarial network (GAN) [21] can be well applied as a 

ool for eliminating inter-domain differences in areas such as NLP 

nd image recognition [22–24] . Compared with traditional trans- 

er learning methods, GAN has the following advantages: 1) GAN 

ses two adversarial neural networks as the training criteria, which 

an back-propagate, and does not rely on inefficient Markov chain 

ethods or approximate inference. Since there is no complex vari- 

tional lower bound, the training difficulty is greatly reduced and 

he training efficiency is improved accordingly. 2) GAN utilizes ad- 

ersarial training to produce clearer and more realistic samples, 

nd exploits discriminators to achieve data transfer, which can 

void the difficulty of loss function design in traditional transfer 

earning. 

In this paper, we propose a model called Generative Adversarial 

ong-Short Term Memory Neural Network (G-LSTM), whose core 

dea is to use the adversarial gaming property of GAN network to 

ransfer the features of target projects, and to utilize the bidirec- 

ional long-short term memory network (BiLSTM) [25] as the deep 

earning feature extractor. The relationship between original GAN 

etwork and G-LSTM is shown in the Fig. 1 . The original GAN gen-

rates realistic fake samples through the generator, makes authen- 

icity judgments in the discriminator. It continuously trains the 

enerator until the distribution of real and fake samples is basically 

he same. The G-LSTM, on the other hand, borrows the framework 
Fig. 1. The relationship between original GAN and G-LSTM. 
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51 
f the original GAN, and solves the problem of data distribution 

ifferences by continuously training the target BiLSTM (i.e., the fea- 

ure extractor of the target project, which corresponds to the gen- 

rator of the original GAN) to make the target features have essen- 

ially the same distribution as the source features. 

Specifically, the main contributions of this paper are as follows: 

1) Pre-processing techniques from the NLP domain are applied 

to the CPDP domain. In the data preprocessing stage, we use 

the continuous bag-of-words (CBOW) [26] model to convert the 

ASTs of the code into numerical vectors. 

2) Combining the GAN structure with the BiLSTM feature extractor 

to form a new model that enables feature transfer between two 

projects, thus eliminating inter-domain distribution differences. 

3) Experiments are conducted on 20 pairs of source-target projects 

to evaluate the performance of the proposed model. 

. Related work 

We select three most relevant researches to discuss, including 

pplication of NLP techniques, development of CPDP, and adversar- 

al learning. 

.1. Application of NLP techniques 

Since the handcrafted features lack semantic and contextual in- 

ormation of the source code, in recent years, some researchers 

ave tried to utilize techniques in NLP domain to extract seman- 

ic and contextual features in SDP. Yang et al . [8] used Deep Belief

etwork (DBN) [27] to extract features from the token vectors tra- 

ersed from the AST of the program source code to build the SDP 

odel, and experimentally demonstrated that the method outper- 

orms the traditional approaches. Wang et al. [9] further mapped 

ach token with a unique integer identifier, transformed token 

ectors into numerical vectors, and then input them into DBN to 

xtract semantic features. Li et al. [28] proposed an SDP frame- 

ork based on Convolutional Neural Networks (CNN) [29] . In this 

ramework, they encoded the token vectors into numerical vectors 

hrough the word embedding algorithm, and then utilized CNN to 

utomatically learn semantic features. Huang et al. [30] took pro- 

ram semantics as the point of penetration to construct an SDP 

odel based on the attention mechanism, in which a mask model 

or the correlation between functional methods in program files 

as introduced. In this paper, we only consider the application of 

LP techniques in CPDP scenarios. 

.2. Development of CPDP 

To solve the data distribution difference problem, researchers 

ave turned to explore the machine learning methods, and most 

esearches focus on supervised CPDP models using handcrafted 

eatures through transfer learning. Pan et al. [4] used transfer com- 

onent analysis (TCA) to transfer the training data while preserv- 

ng the data attributes, so that the source data and the target data 

ave similar data distributions. Turhan et al. [5] presented nearest 

eighbor filtering (NNFilter) to construct a training set identical to 

he target set for training by pooling together instances with sim- 

lar feature selection. Zhou et al. [31] proposed a balanced distri- 

ution adaptation (BDA) method that considers both marginal dis- 

ribution and conditional distribution, and adaptively assigns dif- 

erent weights, which is based on transfer learning to balance the 

ata distribution. Tong et al. [32] presented a novel kernel spectral 

mbedding transfer ensemble (KSETE) method, which could find a 

eries of potential common kernel feature subspace. Each of sub- 

pace could maximize the similarity between the source and target 

atasets while preserving the intrinsic characteristics of the data. 
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Fig. 2. The framework of the G-LSTM model. 
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Fig. 3. Two code examples. 
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hese researches have addressed the data distribution differences 

roblem to varying degrees. However, all those methods are im- 

lemented directly on the basis of handcrafted feature extraction, 

nd the design of the loss function is complicated. The method for 

olving the difference problem applicable to features extracted by 

eural networks is the focus of this paper. 

.3. Adversarial learning 

Adversarial adaptation technology has recently been used as a 

eneral tool to minimize the distribution differences between do- 

ains. In other fields, there have been researches using genera- 

ive adversarial network (GAN) to design different generative ad- 

ersarial algorithms to eliminate inter-domain differences. Bous- 

alis et al. [22] applied adversarial learning to domain adaptation 

n natural language process (NLP). They aimed to transfer knowl- 

dge from source domain to target domain. Liu et al. [23] pro- 

osed coupled generative adversarial networks (CoGANs) that train 

wo GANs to generate images from two domains separately. This 

ethod could obtain the domain invariant feature space of both 

omains by binding the high-level parameters of two GANs. Zeng 

t al. [24] attempted to establish a unified framework based on the 

nsupervised domain adaptation technology of adversarial learning 

bjectives, which is called adversarial discriminatory domain adap- 

ation (ADDA), and achieved good experimental results in the ex- 

eriments across four domain shifts. In this paper, we plans to use 

he neural network model built by GAN to solve the problem of 

ata distribution differences between source and target projects in 

PDP research. 

. Methodology 

In this section, we mainly discuss how to implement the G- 

STM model. Fig. 2 illustrates the overall procedure of our pro- 

osed method that automatically learns the semantic and contex- 

ual features from the source code. Specifically, the G-LSTM model 
52 
ontains several steps: 1 ©Program code parsing; 2 © AST node map- 

ing and embedding; 3 ©Transfer model building and defect predic- 

ion. 

.1. Program Code Parsing 

The first step of the G-LSTM model is to parse the code of each 

odule of the source and target projects into the form of AST. AST 

s a tree-like representation of the abstract syntax structure of the 

ode, where each statement in the code is represented as a node 

n the tree. AST can effectively preserve the syntactic structure and 

emantic information of the code. As shown in Fig. 3 , the struc- 

ure of code a and code b are very similar. The length of the code,

he number of operands and operators, and even their complexity 

emain the same, so that they have almost the same static code 

etrics (handcrafted features). That means that there is almost no 

ifference in their statistical features, and the distances between 

he feature spaces will be very small. In the classification phase, 

he classifier is likely to group the two codes together. However, 

t is clear that code a is free of defects, while code b is defective,

hich indicates that using only handcrafted features alone will re- 

ult in wrong detection results. However, the contextual informa- 

ion in these two code fragments is significantly different. Specifi- 
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Fig. 4. ASTs of two code examples. 
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Fig. 5. Structure of CBOW model. 
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ally, in code a , the statement i ++ is within the while loop struc-

ure, while in code b , it follows the while loop structure. Such dif-

erence is evident in their ASTs, as shown in Fig. 4 . In the AST of

ode a , the node whileStatement is the parent of the node for state- 

ent i ++ , while in the AST of code b they are juxtaposed. Hence,

t is necessary to extract semantic and contextual features from the 

ST of the source code. 

In this paper, we exploit Javalang [33] , an open source Python 

ependency package, to parse the code of the source and target 

rojects. Javalang provides a tokenizer and a parser based on the 

ava language specification, which can help to construct the AST of 

ava code. 

.2. AST node mapping and embedding 

After extracting the ASTs of the source and target projects, we 

eed to traverse each node of the tree to generate the token vec- 

ors. There are 92 types of nodes in AST, but we only need nodes

hat are prone to defects. Therefore, we choose the following four 

lasses of types of nodes as our tokens: 

1) nodes that represent method invocations; 

2) nodes for declarations, including method declarations, class 

declarations, interface declarations, etc; 

3) control flow nodes, such as if statement, while statement, etc; 

4) other nodes. 

Since we plan to use deep learning to extract semantic features 

nd token vectors cannot be directly input to the neural network, 

e need to convert token vectors into numerical vectors. Firstly, 

e have to construct a dictionary based on the extracted tokens, 

hen utilize word embedding techniques to represent each token 

s a high-dimensional vector that contains contextual information 

bout each token, and finally exploit the neural network to learn 

he relationships between the nodes. In this process we use the 

BOW model for word embedding. It is a neural network model 

idely used in the field of NLP for fast training to obtain word 

ectors, and the core principle is to predict the central word by 

he first R words and the last R words of the central word. The 

tructure of CBOW model is shown in Fig. 5 . 
53 
Here the input layer is composed of the context vectors { x 1 , 

 2 , ..., x M 

} encoded by one-hot, where the window size is M and

he vocabulary size is V . It is connected to the hidden layer by a

 × N -dimensional weight matrix W 1 . The hidden layer performs a 

eighted average of the input vectors with the following equation. 

 = 

1 

M 

W 1 · ( 
M ∑ 

i =1 

x i ) (1) 

nd the hidden layer is connected to the output layer by a N × V -

imensional weight matrix W 0 . Thus, the input of the j- th node of 

he output layer is as follows. 

 j = v ′ j · h (2) 

ere, v ′ 
j 

represents the j- th column of the W 0 matrix. The output 

f the output layer is the result of normalizing the predicted prob- 

bility vector for each target word. The output of the j- th node of 

he output layer is shown in Equation 3. 

 c, j = p( w y, j | w 1 , ..., w M 

) = 

exp ( u j ) 

V ∑ 

j=1 

exp ( u 

′ j) 
(3) 

Based on the output value, the word vector model can be 

rained by updating the two weight matrices in the form of back 

ropagation. After the training is completed, the trained weight 

atrix W 1 
∗ is the word embedding matrix, and the word vector 

f the i -th target word is the i -th row of the word embedding ma-

rix. 

.3. Transfer model building and defect prediction 

The original GAN network is composed of two networks: a gen- 

rative network and a discriminative network. In the generative 

etwork, the generator G generates a fake data distribution based 

n a sequence of random noise. Then the generated fake data and 

he real data are fed together into the discriminative network. Af- 

erwards, the discriminator D in the discriminative network is re- 

ponsible for determining whether the input is fake or true. The 

AN is formulated as follows. 

 (D, G ) = E x ∼P data 
[ logD (x ) ] + E x ∼P g [ log(1 − D (x )) ] (4) 

ere, x denotes the real samples, P data denotes the distribution of 

he real samples, P g denotes the distribution of the samples gen- 

rated by the generator G, D ( x ) represents the probability that the 

iscriminator determines that the real data is true. From Eq. 4 , it 

an be seen that when the generator G is fixed, max V ( G,D ) repre-

ents the difference between P data and P g . In order to find a closer 

istribution, the optimal G needs to be selected so that this max- 

mum value is minimized, that is, the difference between the two 

istributions is minimized, as shown in Eq. 5. 

 

∗ = arg min 

G 
max 

D 
V (G, D ) (5) 
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Fig. 6. The framework of transfer model. 
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Goodfellow et al. [34] demonstrate that GAN has global opti- 

ality and optimal performance of the generator G when P data = 

 g . At this point the generator generates the most realistic data 

ith maximum probability, making the discriminator D unable to 

istinguish the distribution of training and testing samples. In this 

aper, the architecture of the original GAN is transformed accord- 

ng to the practical requirements of CPDP, and the deep learning- 

ased transfer model is proposed (shown in Fig. 6 ). 

The basic principle is to treat the source feature vectors as real 

amples, the target features extractor as generator, and the tar- 

et feature vectors as fake samples, and then input the source 

nd target feature vectors into the discriminator for gaming. When 

he discriminator can no longer distinguish the source features 

rom the target features, the difference in distribution between the 

ource and target projects is basically eliminated. 

As shown in Fig. 6 , the construction process of the transfer 

odel can be divided into two steps. In the first step, we need to 

rain the source feature extractor and source classifier after split- 

ing the source project data into training and validation sets in the 

atio of 8:2. The classifier used here is the logistic regression (LR) 

lassifier because it is simple to construct and convenient for sub- 

equent comparison experiments. And the second step requires the 

se of adversarial learning to eliminate the distribution differences 

etween projects. To shorten the training time, the initial version 

f the target feature extractor should be the same as the trained 

ource feature extractor. After both the source and target feature 

ectors are input to the discriminator, the distributional similarity 

f the source and target projects can be expressed by the cross en- 
54 
ropy with the following equation. 

((x, y ) , D ) = −y log D ( x i ) − (1 − y ) log (1 − D (x )) (6)

In Eq. (6) , x denotes the source feature sample, y denotes the 

arget feature sample, and D(x) denotes the probability that the 

iscriminator determines that the source feature sample is true. To 

btain the maximum similarity H , the target feature extractor and 

iscriminator need to be trained. First, the target feature extractor 

arameters need to be frozen and the discriminator needs to be 

rained according to the gradient ascent method to improve its dis- 

riminative ability. If the discriminator can distinguish the source 

nd target samples after training, the discriminator parameters are 

rozen and the target feature extractor parameters are updated ac- 

ording to the gradient descent method. Afterwards, the target fea- 

ure vectors are extracted again and input to the discriminator for 

udgment. So on and so forth until the discriminator determines 

hat all the input samples are of the same class, at which time the 

istribution of the target feature vectors has converged to the dis- 

ribution of the source feature vectors. 

We select BiLSTM with attention mechanism as our source and 

arget feature extractor, whose structure is shown in Fig. 6 , includ- 

ng BiLSTM layers, the attention layer and the max pooling layer. 

or BiLSTM layer, semantic and contextual features are captured 

rom the input numerical vectors and are then output. For the at- 

ention layer, the attention mechanism determines the importance 

f each node in vectors and assigns a weight to each node when 

onstructing the expression for the labeled vector. The attention 

echanism is effective for enhancing the impact of key nodes and 
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Table 1 

The statistics of experimental projects. 

Project Version # of Files Defect Rate (%) 

Ivy 2.0 352 11.4 

Poi 3.0 438 64.1 

Xerces 1.4 508 76.8 

Synapse 1.2 256 33.6 

Xalan 2.6 875 53.1 

Table 2 

Confusion matrix. 

Real positive Real negative 

Predicted Positive TP FP 

Predicted Negative FN TN 
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Fig. 7. AUC of the first comparison experiment. 
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Table 4 

The statistics of the first comparison experiment. 

Average AUC Cliff’s delta 

LSTM with Label Encoding 0.702 0.638 

G-LSTM 0.824 - 
earning advanced features. For the max pooling layer, this layer is 

sed to pool an unfixed size feature vector into a fixed size feature 

ector in the multidimensional space. By using this layer, we can 

xtract representative information from the original feature vector. 

Since the source and target feature distributions have con- 

erged, the target feature vectors can be directly input to the 

rained source classifier for prediction. 

. Experimental setup 

In this section, we describe the settings of our experiments and 

valuate the effectiveness of our G-LSTM model, we put forward 

wo research questions: 

• RQ1: Can the word embedding model CBOW widely used in 

• the NLP domain learn meaningful vector presentation of tokens 

in CPDP? 
• •RQ2: Can G-LSTM outperform the traditional and state-of the- 

art CPDP approaches? 

.1. Datasets 

The open source repository PROMISE includes multiple defec- 

ive open source software projects built in various computational 

anguages. Computational languages are similar to natural lan- 

uages in that they also contain words that humans can under- 

tand, and they also have semantics and sequencing. Some of the 

echniques used in NLP can also be applied to computational lan- 

uages. Thus, the repository is widely used in both NLP and CPDP 

esearch. 

In our case, we choose five open source projects based on the 

AVA language from the PROMISE repository as the experimental 

ataset. In order to ensure the generality of the evaluation results, 

he chosen projects have different sizes and defect rates. Table 1 

hows the specific information of the selected five projects. The 

hosen projects are combined two by two, which can produce 20 

ets of source-target project pairs. 

.2. Evaluation metrics 

In this paper, area under the ROC curve (AUC) and accuracy 

Acc) are chosen to evaluate the performance of the proposed 

odel. These metrics are widely used to evaluate previous work 

f CPDP [4–6] . In the process of binary classification, the results 

an be divided into four categories according to the classification 

esults as shown in Table 2 . 

Based on the confusion matrix, real positive rate (TPR) and false 

ositive rate (FPR) can be calculated as shown in formulas (7) and 

8). 

 P R = 

F P 

F P + T N 

(7) 
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 P R = 

T P 

T P + F N 

(8) 

Then the ROC curve can be drawn with FPR as the horizontal 

xis and TPR as the vertical axis. The area under the ROC curve is 

UC. According to the definition of AUC, the larger the AUC value, 

he better the prediction model. 

Acc is also positively correlated with model performance, we 

an define Acc as follows. 

cc = 

T P + T N 

T P + F P + T N + F N 

(9) 

.3. Statistical analysis methods 

Statistical test can be used to analyze whether there exists 

 statistically significant difference between results of different 

ethods. We exploit Cliff’s delta to measure the effect size be- 

ween two different methods, which can quantify the amount of 

ifference between them. Table 3 describes corresponding effec- 

iveness levels for different ranges of values of Cliff’s delta. 

. Experimental design and results analysis 

This section discusses the experimental design for the two RQs 

nd the corresponding analysis of the experimental results. In this 

aper, we use Python environment and deep learning framework 

ensorFlow to implement the proposed model. All experiments are 

un on a Linux server with NVIDIA RTX 2080. The total number of 

ines of code for the G-LSTM model is 1607. And the G-LSTM model 

as run for 50 epochs on each of the 20 sets of experiments. 

.1. RQ1: Can the word embedding model CBOW widely used in the 

LP domain learn meaningful vector presentation of tokens in CPDP? 

In RQ1, we want to investigate whether the word embedding 

odel CBOW can learn meaningful vector presentation for tokens 

nd help to improve the prediction performance of our proposed 

odel G-LSTM. Specifically, we design a comparison experiment 

etween the GLSTM method and the method that uses simple se- 

uential number encoding (also called label encoding) directly for 

lassification. And we evaluate the function of the CBOW model 

rom qualitative perspective and quantitative perspective respec- 

ively. The experimental results are shown in Fig. 7 and Table 4 . 
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Table 5 

The statistics of the second comparison experiment. 

Average AUC Average Acc Cliff’s delta-AUC Cliff’s delta-Acc 

Baseline1 0.560 0.584 0.918 0.680 

Baseline2 0.633 0.601 0.865 0.630 

Baseline3 0.536 0.467 0.925 0.705 

G-LSTM 0.824 0.709 - - 

Table 3 

Effectiveness Levels for Different Cliff’s Delta. 

Value Range Effectiveness Level 

0.474 ≤ | δ| Large 

0.33 ≤ | δ| < 0.474 Medium 

0.147 ≤ | δ| < 0.33 Small 

| δ| < 0.147 Negligible 
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Fig. 8. The box-plot of the second comparison experiment. 
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From the qualitative perspective, the word embedding model 

BOW considers the contextual information of the nodes and facil- 

tates the subsequent processing of extracting semantic and con- 

extual features. Theoretically, the application of CBOW model in 

PDP makes sense. From the quantitative perspective, as can be 

een from Fig. 7 , the AUC values of G-LSTM in 80% of the 20 sets

f experiments are better than those of the label encoding-only 

ethod. As is shown in Table 4 , the average AUC value of G-LSTM 

s 17.38% higher than that of label encoding method, which re- 

ects the large difference between them. In addition, the value of 

liff’s delta is 0.638, which indicates the effect size between the 

wo methods is large. 

.2. RQ2: Can G-LSTM outperform the traditional and state-of-the-art 

PDP approaches? 

In RQ2, we seek to investigate whether the proposed G- 

STM model can outperform other CPDP baselines. Specifically, we 

hoose several traditional and state-of-the-art CPDP baselines as 

ollows. All comparison experiments were performed in Matlab 

016a environment. 

Baseline1 (TCA [4] ): The baseline1 method is a feature-based 

ransfer learning method that minimizes the data distance be- 

ween source and target data to achieve similar distribution of 

hem. (973 lines of code). 

Baseline2 (BDA [31] ): The baseline2 method adaptively assigns 

ifferent weights to marginal distribution and conditional distri- 

ution, and makes the source and target data distributions similar 

hrough data transferring. (280 lines of code). 

Baseline3 (KSETE [32] ): The baseline3 method combines kernel 

pectrum embedding, transfer learning and ensemble learning to 

mprove model performance. (927 lines of code). 

As shown in Fig. 8 , the white line indicates the median of 20

ets of the experimental values, and G-LSTM has the highest me- 

ian and the highest box plot position in two subgraphs, which 

eans that the overall experimental performance of G-LSTM on 

oth AUC and Acc outperformed the other baselines. Besides, as 

an be seen in Table 5 , the computed values of Cliff’s delta of base-

ine1, baseline2 and baseline3 are all greater than 0.474, which re- 

ects that the level of variation among G-LSTM and other baselines 

re large. And both the average AUC and average Acc of G-LSTM 

re higher than the other baselines by more than 15%, proving the 

etter performance of G-LSTM. 

Theoretically, G-LSTM transfers more adequately due to the ad- 

ersarial training approach that can produce clearer and more re- 

listic samples. Moreover, G-LSTM considers the extraction of se- 

antic and contextual features, and is more sensitive to defects, 

hus, its prediction performance is better. 
56 
. Conclusion and future work 

In this paper, we propose a new deep learning-based CPDP 

odel, namely, the G-LSTM model. The main process of the G- 

STM model is as follows: We first use a simplified AST to repre- 

ent the code of each extracted program module. The token vectors 

re then traversed by ASTs and word embedding are performed 

sing the CBOW algorithm, which help token vectors to be con- 

erted into numerical vectors. Then the numerical vectors are fed 

nto the G-LSTM model to eliminate cross-project data distribu- 

ion differences and extract the semantic and contextual features 

f the target project. Finally, the presence of defects is determined 

y LR classifier. In order to verify the effectiveness of our model, 

e adopt AUC and Acc as evaluation metrics for the two sets of 

omparison experiments. Experimental results show that the pro- 

osed G-LSTM model outperforms the chosen traditional and state- 

f-the-art CPDP methods. The accuracy of the model prediction is 

omewhat limited because we only use the most basic LR classi- 

er. In the future, we plan to use ensemble learning that has bet- 

er classification performance. Besides, the G-LSTM model is only 

pplicable to one-to-one prediction, and we can try to study the 

any-to-one case in the future. 
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