
Pattern Recognition Letters 160 (2022) 50–57

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Cross-project defect prediction based on G-LSTM model

Ying Xing

a , Xiaomeng Qian

b , Yu Guan

c , ∗, Bin Yang

c , Yuwei Zhang

d

a School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10, Xitucheng Road, Beijing, 100876, China
b School of Modern Post, Beijing University of Posts and Telecommunications, No.10, Xitucheng Road, Beijing, 100876, China
c Du Xiaoman, Science Technology Co., Ltd., No.10, Xibeiwang East Road, Beijing, 10 0 085, China
d School of Computer Science, Peking University, No.5, Summer Palace Road, Beijing, 100871, China

a r t i c l e i n f o

Article history:

Received 27 December 2021

Revised 20 March 2022

Accepted 28 April 2022

Available online 30 April 2022

Edited by: Maria De Marsico.

Keywords:

Computational language processing

Cross-project defect prediction

Long-term and short-term memory neural

network

Continuous bag-of-word model

Generative adversarial network

a b s t r a c t

Cross-project defect prediction (CPDP) is currently a hot research direction in the field of software reli-

ability. Traditional CPDP methods cannot capture the semantic and contextual information of programs

by handcrafted features, which affects the prediction performance. In this paper, we apply technology in

the NLP domain to solve it. We first extract token vectors from the abstract syntax tree (AST) of source

and target code files, and then convert them into numerical vectors by the word embedding algorithm of

continuous bag-of-word model (CBOW) as the input of the proposed deep learning model named Gen-

erative Adversarial Long-Short Term Memory Neural Networks (G-LSTM). The model integrates genera-

tive adversarial network (GAN) and bidirectional long-short term memory networks (BiLSTM) with atten-

tion mechanism to automatically learn semantic and contextual features of programs. Specifically, GAN is

used to eliminate the differences in data distribution between source and target projects, and BiLSTM is

the feature extraction encoder. We compose five projects of the PROMISE dataset into 20 source-target

project pairs and conduct comparison experiments on them. The experimental results demonstrate that

our method outperforms some traditional and state-of-the-art CPDP methods in terms of the evaluation

metrics of AUC and Acc.

© 2022 Published by Elsevier B.V.

1

i

i

a

t

p

r

t

p

c

d

p

t

m

n

t

(

y

c

b

m

c

p

t

h

t

d

c

i

p

s

g

i

i

o

h

0

. Introduction

Modern software written in computational language is becom-

ng more and more powerful, and its scale and complexity are also

ncreasing. Defects in computational language programming poses

 huge threat to the quality and reliability of software. In order

o ensure software quality, software defect prediction (SDP) is pro-

osed as an effective means of identifying defects, which not only

educes the cost and time of software testing, but also ensures that

he testing team can locate defects more easily [1] . However, the

rerequisite for SDP implementation is to obtain sufficient histori-

al data, which is difficult to achieve in the early stage of software

evelopment. In order to solve this problem, cross-project defect

rediction (CPDP) is presented [2] , the main concept of which is

o build the defect prediction model according to the defect infor-

ation of mature projects (source projects), and then apply it to

ew projects (target projects) to predict software modules prone

o defects [3] .
∗ Corresponding author.

E-mail addresses: xingying@bupt.edu.cn (Y. Xing), qianxiaomeng@bupt.edu.cn

X. Qian), guanyu@bupt.edu.cn (Y. Guan), yangbin01@duxiaoman.com (B. Yang),

uweizhang@pku.edu.cn (Y. Zhang) .

t

d

a

n

i

ttps://doi.org/10.1016/j.patrec.2022.04.039

167-8655/© 2022 Published by Elsevier B.V.
Previous researches on CPDP mainly focus on the use of hand-

rafted static features to establish the defect prediction model

y machine learning techniques [4–6] . Those handcrafted features

ainly represent the macroscopic statistical characteristics of the

ode, such as the number of lines of code or average method com-

lexity, etc [7] . The source code of the program contains rich struc-

ural and semantic information. However, researches using only

andcrafted features are difficult to capture the complex informa-

ion from the source code, especially, the contextual and semantic

etails within methods. Therefore, it is almost impossible for hand-

rafted features to accurately identify defects when defects appear

nside methods. This limitation is an important factor affecting the

rediction accuracy of CPDP. To overcome the limitation, some re-

earchers [8–11] have introduced techniques from the natural lan-

uage processing (NLP) domain to CPDP researches to learn mean-

ngful contextual and semantic features from source code. Specif-

cally, the core idea is to represent the source code in the form

f abstract syntax trees (AST) [12] , then treat the nodes on the

rees as words in text, afterwards, utilize the models in the NLP

omain to conduct pre-processing on words and extract features,

nd finally, train classifiers to predict. Commonly used NLP tech-

iques include language models for pre-processing and deep learn-

ng models for feature extraction. The former can quantitatively

https://doi.org/10.1016/j.patrec.2022.04.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.04.039&domain=pdf
mailto:xingying@bupt.edu.cn
mailto:qianxiaomeng@bupt.edu.cn
mailto:guanyu@bupt.edu.cn
mailto:yangbin01@duxiaoman.com
mailto:yuweizhang@pku.edu.cn
https://doi.org/10.1016/j.patrec.2022.04.039

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

r

(

l

b

(

t

p

s

f

s

s

b

o

p

f

s

p

t

l

c

e

t

a

f

u

c

m

a

t

v

a

a

l

L

i

t

t

l

n

e

t

g

t

o

d

t

e

t

2

a

i

2

f

h

t

N

v

m

f

e

v

e

w

f

t

a

g

m

f

w

N

epresent text sequences, such as neural network language model

NNLM) [13] , word to vector (Word2vec) [14] and FastText [15] . The

atter has a wide variety, including convolutional neural network-

ased (CNN-based) models [16] , recurrent neural network-based

RNN-based) models [17] , attention mechanism-based models [18] ,

ransformer-based models [19] , etc. In [8 , 9], the comparison ex-

eriments with traditional machine learning methods can demon-

trate the superiority of NLP techniques.

Another factor that affects the performance of CPDP is the dif-

erence in data distribution between projects [20] . Previously, re-

earchers assume that the source project and the target project

how the same distribution. In fact, since the projects developed

y different teams and companies are always different in terms

f scale, function and coding standards, the source data of these

rojects are inevitably different in distribution. In other words, dif-

erent projects may have different data distributions. In order to

olve the problem, some researches [4–6] have attempted to ex-

loit machine learning methods such as transfer learning. Whereas,

hose traditional machine learning methods are often unable to

earn complex features, and the design of the loss function is

omplicated. It has been experimentally demonstrated that gen-

rative adversarial network (GAN) [21] can be well applied as a

ool for eliminating inter-domain differences in areas such as NLP

nd image recognition [22–24] . Compared with traditional trans-

er learning methods, GAN has the following advantages: 1) GAN

ses two adversarial neural networks as the training criteria, which

an back-propagate, and does not rely on inefficient Markov chain

ethods or approximate inference. Since there is no complex vari-

tional lower bound, the training difficulty is greatly reduced and

he training efficiency is improved accordingly. 2) GAN utilizes ad-

ersarial training to produce clearer and more realistic samples,

nd exploits discriminators to achieve data transfer, which can

void the difficulty of loss function design in traditional transfer

earning.

In this paper, we propose a model called Generative Adversarial

ong-Short Term Memory Neural Network (G-LSTM), whose core

dea is to use the adversarial gaming property of GAN network to

ransfer the features of target projects, and to utilize the bidirec-

ional long-short term memory network (BiLSTM) [25] as the deep

earning feature extractor. The relationship between original GAN

etwork and G-LSTM is shown in the Fig. 1 . The original GAN gen-

rates realistic fake samples through the generator, makes authen-

icity judgments in the discriminator. It continuously trains the

enerator until the distribution of real and fake samples is basically

he same. The G-LSTM, on the other hand, borrows the framework
Fig. 1. The relationship between original GAN and G-LSTM.

2

h

r

f

p

i

h

n

t

i

b

t

f

d

e

s

s

d

51
f the original GAN, and solves the problem of data distribution

ifferences by continuously training the target BiLSTM (i.e., the fea-

ure extractor of the target project, which corresponds to the gen-

rator of the original GAN) to make the target features have essen-

ially the same distribution as the source features.

Specifically, the main contributions of this paper are as follows:

1) Pre-processing techniques from the NLP domain are applied

to the CPDP domain. In the data preprocessing stage, we use

the continuous bag-of-words (CBOW) [26] model to convert the

ASTs of the code into numerical vectors.

2) Combining the GAN structure with the BiLSTM feature extractor

to form a new model that enables feature transfer between two

projects, thus eliminating inter-domain distribution differences.

3) Experiments are conducted on 20 pairs of source-target projects

to evaluate the performance of the proposed model.

. Related work

We select three most relevant researches to discuss, including

pplication of NLP techniques, development of CPDP, and adversar-

al learning.

.1. Application of NLP techniques

Since the handcrafted features lack semantic and contextual in-

ormation of the source code, in recent years, some researchers

ave tried to utilize techniques in NLP domain to extract seman-

ic and contextual features in SDP. Yang et al . [8] used Deep Belief

etwork (DBN) [27] to extract features from the token vectors tra-

ersed from the AST of the program source code to build the SDP

odel, and experimentally demonstrated that the method outper-

orms the traditional approaches. Wang et al. [9] further mapped

ach token with a unique integer identifier, transformed token

ectors into numerical vectors, and then input them into DBN to

xtract semantic features. Li et al. [28] proposed an SDP frame-

ork based on Convolutional Neural Networks (CNN) [29] . In this

ramework, they encoded the token vectors into numerical vectors

hrough the word embedding algorithm, and then utilized CNN to

utomatically learn semantic features. Huang et al. [30] took pro-

ram semantics as the point of penetration to construct an SDP

odel based on the attention mechanism, in which a mask model

or the correlation between functional methods in program files

as introduced. In this paper, we only consider the application of

LP techniques in CPDP scenarios.

.2. Development of CPDP

To solve the data distribution difference problem, researchers

ave turned to explore the machine learning methods, and most

esearches focus on supervised CPDP models using handcrafted

eatures through transfer learning. Pan et al. [4] used transfer com-

onent analysis (TCA) to transfer the training data while preserv-

ng the data attributes, so that the source data and the target data

ave similar data distributions. Turhan et al. [5] presented nearest

eighbor filtering (NNFilter) to construct a training set identical to

he target set for training by pooling together instances with sim-

lar feature selection. Zhou et al. [31] proposed a balanced distri-

ution adaptation (BDA) method that considers both marginal dis-

ribution and conditional distribution, and adaptively assigns dif-

erent weights, which is based on transfer learning to balance the

ata distribution. Tong et al. [32] presented a novel kernel spectral

mbedding transfer ensemble (KSETE) method, which could find a

eries of potential common kernel feature subspace. Each of sub-

pace could maximize the similarity between the source and target

atasets while preserving the intrinsic characteristics of the data.

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

Fig. 2. The framework of the G-LSTM model.

T

p

p

a

s

n

2

g

m

t

v

m

i

e

p

t

m

d

e

u

o

t

p

t

d

C

3

L

p

t

Fig. 3. Two code examples.

c

p

t

3

m

i

c

i

s

t

t

r

m

d

t

t

i

w

s

t

hese researches have addressed the data distribution differences

roblem to varying degrees. However, all those methods are im-

lemented directly on the basis of handcrafted feature extraction,

nd the design of the loss function is complicated. The method for

olving the difference problem applicable to features extracted by

eural networks is the focus of this paper.

.3. Adversarial learning

Adversarial adaptation technology has recently been used as a

eneral tool to minimize the distribution differences between do-

ains. In other fields, there have been researches using genera-

ive adversarial network (GAN) to design different generative ad-

ersarial algorithms to eliminate inter-domain differences. Bous-

alis et al. [22] applied adversarial learning to domain adaptation

n natural language process (NLP). They aimed to transfer knowl-

dge from source domain to target domain. Liu et al. [23] pro-

osed coupled generative adversarial networks (CoGANs) that train

wo GANs to generate images from two domains separately. This

ethod could obtain the domain invariant feature space of both

omains by binding the high-level parameters of two GANs. Zeng

t al. [24] attempted to establish a unified framework based on the

nsupervised domain adaptation technology of adversarial learning

bjectives, which is called adversarial discriminatory domain adap-

ation (ADDA), and achieved good experimental results in the ex-

eriments across four domain shifts. In this paper, we plans to use

he neural network model built by GAN to solve the problem of

ata distribution differences between source and target projects in

PDP research.

. Methodology

In this section, we mainly discuss how to implement the G-

STM model. Fig. 2 illustrates the overall procedure of our pro-

osed method that automatically learns the semantic and contex-

ual features from the source code. Specifically, the G-LSTM model
52
ontains several steps: 1 ©Program code parsing; 2 © AST node map-

ing and embedding; 3 ©Transfer model building and defect predic-

ion.

.1. Program Code Parsing

The first step of the G-LSTM model is to parse the code of each

odule of the source and target projects into the form of AST. AST

s a tree-like representation of the abstract syntax structure of the

ode, where each statement in the code is represented as a node

n the tree. AST can effectively preserve the syntactic structure and

emantic information of the code. As shown in Fig. 3 , the struc-

ure of code a and code b are very similar. The length of the code,

he number of operands and operators, and even their complexity

emain the same, so that they have almost the same static code

etrics (handcrafted features). That means that there is almost no

ifference in their statistical features, and the distances between

he feature spaces will be very small. In the classification phase,

he classifier is likely to group the two codes together. However,

t is clear that code a is free of defects, while code b is defective,

hich indicates that using only handcrafted features alone will re-

ult in wrong detection results. However, the contextual informa-

ion in these two code fragments is significantly different. Specifi-

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

Fig. 4. ASTs of two code examples.

c

t

f

c

m

i

A

d

p

J

J

3

n

t

t

c

a

w

w

t

a

a

t

C

w

v

t

s

Fig. 5. Structure of CBOW model.

x

t

V

w

h

A

d

t

u

H

o

a

t

y

t

p

m

o

t

3

e

n

o

t

t

s

G

V

H

t

e

d

c

s

d

i

d

G

ally, in code a , the statement i ++ is within the while loop struc-

ure, while in code b , it follows the while loop structure. Such dif-

erence is evident in their ASTs, as shown in Fig. 4 . In the AST of

ode a , the node whileStatement is the parent of the node for state-

ent i ++ , while in the AST of code b they are juxtaposed. Hence,

t is necessary to extract semantic and contextual features from the

ST of the source code.

In this paper, we exploit Javalang [33] , an open source Python

ependency package, to parse the code of the source and target

rojects. Javalang provides a tokenizer and a parser based on the

ava language specification, which can help to construct the AST of

ava code.

.2. AST node mapping and embedding

After extracting the ASTs of the source and target projects, we

eed to traverse each node of the tree to generate the token vec-

ors. There are 92 types of nodes in AST, but we only need nodes

hat are prone to defects. Therefore, we choose the following four

lasses of types of nodes as our tokens:

1) nodes that represent method invocations;

2) nodes for declarations, including method declarations, class

declarations, interface declarations, etc;

3) control flow nodes, such as if statement, while statement, etc;

4) other nodes.

Since we plan to use deep learning to extract semantic features

nd token vectors cannot be directly input to the neural network,

e need to convert token vectors into numerical vectors. Firstly,

e have to construct a dictionary based on the extracted tokens,

hen utilize word embedding techniques to represent each token

s a high-dimensional vector that contains contextual information

bout each token, and finally exploit the neural network to learn

he relationships between the nodes. In this process we use the

BOW model for word embedding. It is a neural network model

idely used in the field of NLP for fast training to obtain word

ectors, and the core principle is to predict the central word by

he first R words and the last R words of the central word. The

tructure of CBOW model is shown in Fig. 5 .
53
Here the input layer is composed of the context vectors { x 1 ,

 2 , ..., x M

} encoded by one-hot, where the window size is M and

he vocabulary size is V . It is connected to the hidden layer by a

 × N -dimensional weight matrix W 1 . The hidden layer performs a

eighted average of the input vectors with the following equation.

 =

1

M

W 1 · (
M ∑

i =1

x i) (1)

nd the hidden layer is connected to the output layer by a N × V -

imensional weight matrix W 0 . Thus, the input of the j- th node of

he output layer is as follows.

 j = v ′ j · h (2)

ere, v ′
j

represents the j- th column of the W 0 matrix. The output

f the output layer is the result of normalizing the predicted prob-

bility vector for each target word. The output of the j- th node of

he output layer is shown in Equation 3.

 c, j = p(w y, j | w 1 , ..., w M

) =

exp (u j)

V ∑

j=1

exp (u

′ j)
(3)

Based on the output value, the word vector model can be

rained by updating the two weight matrices in the form of back

ropagation. After the training is completed, the trained weight

atrix W 1
∗ is the word embedding matrix, and the word vector

f the i -th target word is the i -th row of the word embedding ma-

rix.

.3. Transfer model building and defect prediction

The original GAN network is composed of two networks: a gen-

rative network and a discriminative network. In the generative

etwork, the generator G generates a fake data distribution based

n a sequence of random noise. Then the generated fake data and

he real data are fed together into the discriminative network. Af-

erwards, the discriminator D in the discriminative network is re-

ponsible for determining whether the input is fake or true. The

AN is formulated as follows.

 (D, G) = E x ∼P data
[logD (x)] + E x ∼P g [log(1 − D (x))] (4)

ere, x denotes the real samples, P data denotes the distribution of

he real samples, P g denotes the distribution of the samples gen-

rated by the generator G, D (x) represents the probability that the

iscriminator determines that the real data is true. From Eq. 4 , it

an be seen that when the generator G is fixed, max V (G,D) repre-

ents the difference between P data and P g . In order to find a closer

istribution, the optimal G needs to be selected so that this max-

mum value is minimized, that is, the difference between the two

istributions is minimized, as shown in Eq. 5.

∗ = arg min

G
max

D
V (G, D) (5)

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

Fig. 6. The framework of transfer model.

m

P

w

d

p

i

b

s

g

a

t

f

s

m

t

t

r

c

s

u

b

o

s

v

o

t

H

t

d

o

d

p

t

c

a

f

c

t

j

t

d

t

t

i

F

f

t

o

c

m

Goodfellow et al. [34] demonstrate that GAN has global opti-

ality and optimal performance of the generator G when P data =

 g . At this point the generator generates the most realistic data

ith maximum probability, making the discriminator D unable to

istinguish the distribution of training and testing samples. In this

aper, the architecture of the original GAN is transformed accord-

ng to the practical requirements of CPDP, and the deep learning-

ased transfer model is proposed (shown in Fig. 6).

The basic principle is to treat the source feature vectors as real

amples, the target features extractor as generator, and the tar-

et feature vectors as fake samples, and then input the source

nd target feature vectors into the discriminator for gaming. When

he discriminator can no longer distinguish the source features

rom the target features, the difference in distribution between the

ource and target projects is basically eliminated.

As shown in Fig. 6 , the construction process of the transfer

odel can be divided into two steps. In the first step, we need to

rain the source feature extractor and source classifier after split-

ing the source project data into training and validation sets in the

atio of 8:2. The classifier used here is the logistic regression (LR)

lassifier because it is simple to construct and convenient for sub-

equent comparison experiments. And the second step requires the

se of adversarial learning to eliminate the distribution differences

etween projects. To shorten the training time, the initial version

f the target feature extractor should be the same as the trained

ource feature extractor. After both the source and target feature

ectors are input to the discriminator, the distributional similarity

f the source and target projects can be expressed by the cross en-
54
ropy with the following equation.

((x, y) , D) = −y log D (x i) − (1 − y) log (1 − D (x)) (6)

In Eq. (6) , x denotes the source feature sample, y denotes the

arget feature sample, and D(x) denotes the probability that the

iscriminator determines that the source feature sample is true. To

btain the maximum similarity H , the target feature extractor and

iscriminator need to be trained. First, the target feature extractor

arameters need to be frozen and the discriminator needs to be

rained according to the gradient ascent method to improve its dis-

riminative ability. If the discriminator can distinguish the source

nd target samples after training, the discriminator parameters are

rozen and the target feature extractor parameters are updated ac-

ording to the gradient descent method. Afterwards, the target fea-

ure vectors are extracted again and input to the discriminator for

udgment. So on and so forth until the discriminator determines

hat all the input samples are of the same class, at which time the

istribution of the target feature vectors has converged to the dis-

ribution of the source feature vectors.

We select BiLSTM with attention mechanism as our source and

arget feature extractor, whose structure is shown in Fig. 6 , includ-

ng BiLSTM layers, the attention layer and the max pooling layer.

or BiLSTM layer, semantic and contextual features are captured

rom the input numerical vectors and are then output. For the at-

ention layer, the attention mechanism determines the importance

f each node in vectors and assigns a weight to each node when

onstructing the expression for the labeled vector. The attention

echanism is effective for enhancing the impact of key nodes and

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

Table 1

The statistics of experimental projects.

Project Version # of Files Defect Rate (%)

Ivy 2.0 352 11.4

Poi 3.0 438 64.1

Xerces 1.4 508 76.8

Synapse 1.2 256 33.6

Xalan 2.6 875 53.1

Table 2

Confusion matrix.

Real positive Real negative

Predicted Positive TP FP

Predicted Negative FN TN

l

u

v

e

v

t

4

e

t

4

t

l

g

s

t

g

r

J

d

t

s

c

s

4

(

m

o

c

r

p

(

F

Fig. 7. AUC of the first comparison experiment.

T

a

A

t

c

A

4

a

m

t

d

t

5

a

p

T

r

l

w

5

N

m

a

m

b

q

c

f

t

Table 4

The statistics of the first comparison experiment.

Average AUC Cliff’s delta

LSTM with Label Encoding 0.702 0.638

G-LSTM 0.824 -
earning advanced features. For the max pooling layer, this layer is

sed to pool an unfixed size feature vector into a fixed size feature

ector in the multidimensional space. By using this layer, we can

xtract representative information from the original feature vector.

Since the source and target feature distributions have con-

erged, the target feature vectors can be directly input to the

rained source classifier for prediction.

. Experimental setup

In this section, we describe the settings of our experiments and

valuate the effectiveness of our G-LSTM model, we put forward

wo research questions:

• RQ1: Can the word embedding model CBOW widely used in

• the NLP domain learn meaningful vector presentation of tokens

in CPDP?
• •RQ2: Can G-LSTM outperform the traditional and state-of the-

art CPDP approaches?

.1. Datasets

The open source repository PROMISE includes multiple defec-

ive open source software projects built in various computational

anguages. Computational languages are similar to natural lan-

uages in that they also contain words that humans can under-

tand, and they also have semantics and sequencing. Some of the

echniques used in NLP can also be applied to computational lan-

uages. Thus, the repository is widely used in both NLP and CPDP

esearch.

In our case, we choose five open source projects based on the

AVA language from the PROMISE repository as the experimental

ataset. In order to ensure the generality of the evaluation results,

he chosen projects have different sizes and defect rates. Table 1

hows the specific information of the selected five projects. The

hosen projects are combined two by two, which can produce 20

ets of source-target project pairs.

.2. Evaluation metrics

In this paper, area under the ROC curve (AUC) and accuracy

Acc) are chosen to evaluate the performance of the proposed

odel. These metrics are widely used to evaluate previous work

f CPDP [4–6] . In the process of binary classification, the results

an be divided into four categories according to the classification

esults as shown in Table 2 .

Based on the confusion matrix, real positive rate (TPR) and false

ositive rate (FPR) can be calculated as shown in formulas (7) and

8).

 P R =

F P

F P + T N

(7)
55
 P R =

T P

T P + F N

(8)

Then the ROC curve can be drawn with FPR as the horizontal

xis and TPR as the vertical axis. The area under the ROC curve is

UC. According to the definition of AUC, the larger the AUC value,

he better the prediction model.

Acc is also positively correlated with model performance, we

an define Acc as follows.

cc =

T P + T N

T P + F P + T N + F N

(9)

.3. Statistical analysis methods

Statistical test can be used to analyze whether there exists

 statistically significant difference between results of different

ethods. We exploit Cliff’s delta to measure the effect size be-

ween two different methods, which can quantify the amount of

ifference between them. Table 3 describes corresponding effec-

iveness levels for different ranges of values of Cliff’s delta.

. Experimental design and results analysis

This section discusses the experimental design for the two RQs

nd the corresponding analysis of the experimental results. In this

aper, we use Python environment and deep learning framework

ensorFlow to implement the proposed model. All experiments are

un on a Linux server with NVIDIA RTX 2080. The total number of

ines of code for the G-LSTM model is 1607. And the G-LSTM model

as run for 50 epochs on each of the 20 sets of experiments.

.1. RQ1: Can the word embedding model CBOW widely used in the

LP domain learn meaningful vector presentation of tokens in CPDP?

In RQ1, we want to investigate whether the word embedding

odel CBOW can learn meaningful vector presentation for tokens

nd help to improve the prediction performance of our proposed

odel G-LSTM. Specifically, we design a comparison experiment

etween the GLSTM method and the method that uses simple se-

uential number encoding (also called label encoding) directly for

lassification. And we evaluate the function of the CBOW model

rom qualitative perspective and quantitative perspective respec-

ively. The experimental results are shown in Fig. 7 and Table 4 .

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

Table 5

The statistics of the second comparison experiment.

Average AUC Average Acc Cliff’s delta-AUC Cliff’s delta-Acc

Baseline1 0.560 0.584 0.918 0.680

Baseline2 0.633 0.601 0.865 0.630

Baseline3 0.536 0.467 0.925 0.705

G-LSTM 0.824 0.709 - -

Table 3

Effectiveness Levels for Different Cliff’s Delta.

Value Range Effectiveness Level

0.474 ≤ | δ| Large

0.33 ≤ | δ| < 0.474 Medium

0.147 ≤ | δ| < 0.33 Small

| δ| < 0.147 Negligible

C

i

t

C

s

o

m

i

fl

C

t

5

C

L

c

f

2

t

t

t

d

b

t

s

i

s

d

m

b

c

l

fl

a

a

b

v

a

m

t

Fig. 8. The box-plot of the second comparison experiment.

6

m

L

s

a

u

v

i

t

o

b

w

c

p

o

s

fi

t

a

m

D

A

w

s

(

P

R

From the qualitative perspective, the word embedding model

BOW considers the contextual information of the nodes and facil-

tates the subsequent processing of extracting semantic and con-

extual features. Theoretically, the application of CBOW model in

PDP makes sense. From the quantitative perspective, as can be

een from Fig. 7 , the AUC values of G-LSTM in 80% of the 20 sets

f experiments are better than those of the label encoding-only

ethod. As is shown in Table 4 , the average AUC value of G-LSTM

s 17.38% higher than that of label encoding method, which re-

ects the large difference between them. In addition, the value of

liff’s delta is 0.638, which indicates the effect size between the

wo methods is large.

.2. RQ2: Can G-LSTM outperform the traditional and state-of-the-art

PDP approaches?

In RQ2, we seek to investigate whether the proposed G-

STM model can outperform other CPDP baselines. Specifically, we

hoose several traditional and state-of-the-art CPDP baselines as

ollows. All comparison experiments were performed in Matlab

016a environment.

Baseline1 (TCA [4]): The baseline1 method is a feature-based

ransfer learning method that minimizes the data distance be-

ween source and target data to achieve similar distribution of

hem. (973 lines of code).

Baseline2 (BDA [31]): The baseline2 method adaptively assigns

ifferent weights to marginal distribution and conditional distri-

ution, and makes the source and target data distributions similar

hrough data transferring. (280 lines of code).

Baseline3 (KSETE [32]): The baseline3 method combines kernel

pectrum embedding, transfer learning and ensemble learning to

mprove model performance. (927 lines of code).

As shown in Fig. 8 , the white line indicates the median of 20

ets of the experimental values, and G-LSTM has the highest me-

ian and the highest box plot position in two subgraphs, which

eans that the overall experimental performance of G-LSTM on

oth AUC and Acc outperformed the other baselines. Besides, as

an be seen in Table 5 , the computed values of Cliff’s delta of base-

ine1, baseline2 and baseline3 are all greater than 0.474, which re-

ects that the level of variation among G-LSTM and other baselines

re large. And both the average AUC and average Acc of G-LSTM

re higher than the other baselines by more than 15%, proving the

etter performance of G-LSTM.

Theoretically, G-LSTM transfers more adequately due to the ad-

ersarial training approach that can produce clearer and more re-

listic samples. Moreover, G-LSTM considers the extraction of se-

antic and contextual features, and is more sensitive to defects,

hus, its prediction performance is better.
56
. Conclusion and future work

In this paper, we propose a new deep learning-based CPDP

odel, namely, the G-LSTM model. The main process of the G-

STM model is as follows: We first use a simplified AST to repre-

ent the code of each extracted program module. The token vectors

re then traversed by ASTs and word embedding are performed

sing the CBOW algorithm, which help token vectors to be con-

erted into numerical vectors. Then the numerical vectors are fed

nto the G-LSTM model to eliminate cross-project data distribu-

ion differences and extract the semantic and contextual features

f the target project. Finally, the presence of defects is determined

y LR classifier. In order to verify the effectiveness of our model,

e adopt AUC and Acc as evaluation metrics for the two sets of

omparison experiments. Experimental results show that the pro-

osed G-LSTM model outperforms the chosen traditional and state-

f-the-art CPDP methods. The accuracy of the model prediction is

omewhat limited because we only use the most basic LR classi-

er. In the future, we plan to use ensemble learning that has bet-

er classification performance. Besides, the G-LSTM model is only

pplicable to one-to-one prediction, and we can try to study the

any-to-one case in the future.

eclaration of Competing Interest

None.

cknowledgments

The authors thank the anonymous reviewers for their feedback

hich helped improve this paper. This work has been partially

upported by the National Natural Science Foundation of China

No. 61702044) and the National Key Research and Development

rogram of China (No.2017YFD0401001).

eferences

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, in: A Systematic Litera-
ture Review on Fault Prediction Performance in Software Engineering, 38, IEEE

Transactions on Software Engineering, 2012, pp. 1276–1304 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0001

Y. Xing, X. Qian, Y. Guan et al. Pattern Recognition Letters 160 (2022) 50–57

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[
[

[2] D. Gray, D. Bowes, N. Davey, Y. Sun, B. Christianson, Software defect predic-
tion using static code metrics underestimates defect-proneness, in: the 2010

International Joint Conference on Neural Networks (IJCNN), 2010, pp. 1–7 .
[3] S. Hosseini, B. Turhan, D. Gunarathna, in: A Systematic Literature Review and

Meta-Analysis on Cross Project Defect Prediction, 45, IEEE Transactions on
Software Engineering, 2019, pp. 111–147 .

[4] J Nam, S J Pan, S Kim, Transfer defect learning, in: 2013 35th international
conference on software engineering (ICSE), IEEE, 2013, pp. 382–391 .

[5] B Turhan, T Menzies, A B Bener, et al., On the relative value of cross-com-

pany and within-company data for defect prediction, Empir. Softw. Eng. 14 (5)
(2009) 540–578 .

[6] Y. Zhang, D. Jin, Y. Xing, Y. Gong, Automated defect identification via path anal-
ysis-based features with transfer learning, J. Syst. Software 166 (2020) 110585 .

[7] X. Xia, D. Lo, S.J. Pan, N. Nagappan, X. Wang, Hydra Massively compositional
model for cross-project defect prediction, IEEE Trans. Softw. Eng. 42 (2016)

977–998 .

[8] X. Yang, D. Lo, X. Xia, Y. Zhang, J. Sun, Deep Learning for Just-in-Time Defect
Prediction, in: 2015 IEEE International Conference on Software Quality, Relia-

bility and Security, 2015, pp. 17–26 .
[9] S. Wang, T. Liu, L. Tan, Automatically learning semantic features for defect pre-

diction, in: 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), 2016, pp. 297–308 .

[10] M. Massoudi, N.K. Jain, P. Bansal, Software defect prediction using dimension-

ality reduction and deep learning, in: 2021 Third International Conference on
Intelligent Communication Technologies and Virtual Mobile Networks (ICICV),

2021, pp. 884–893 .
[11] K Shi, Y Lu, G Liu, et al., MPT-embedding: An unsupervised representation

learning of code for software defect prediction, J. Software 33 (4) (2021)
23–30 .

12] A Hindle, E.T Barr, M Gabel, Z Su, P Devanbu, On the naturalness of software,

Commun. ACM 59 (5) (2016) 122–131 .
[13] Y Bengio, R Ducharme, P Vincent, et al., A neural probabilistic language model,

J. Mach. Learn. Res. 3 (2003) 1137–1155 .
[14] T Mikolov, K Chen, G Corrado, et al., Efficient estimation of word representa-

tions in vector space, 2013 arXiv: 1301.3781 .
[15] P Bojanowski, E Grave, A Joulin, et al., Enriching word vectors with subword

information, Trans. Assoc. Comput. Linguist. 5 (2017) 135–146 .

[16] A Conneau, H Schwenk, L Barrault, et al., Very deep convolutional networks for
text classification, in: In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 1, 1, Long
Papers, 2017, p. 1107 −1116 .

[17] Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representa-
tions. arXiv: 1802.05365 .
57
[18] H Y Choi, K Cho, Y H Bengio, Fine-grained attention mechanism for neural
machine translation, Neurocomputing 284 (2018) 171–176 .

[19] T Wolf, L Debut, V Sanh, et al., Transformers: state-of-the-art natural language
processing, in: Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations, 2020, Demos. Strouds-
burg: ACL, 2020, pp. 38–45 .

20] J Nam, S.J Pan, S Kim, Transfer defect learning, in: 2013 35th international con-
ference on software engineering (ICSE), IEEE, 2013, pp. 382–391 .

21] K Wang, C Gou, Y Duan, et al., Generative adversarial networks: introduction

and outlook, IEEE J. Automatica Sinica 4 (4) (2017) 588–598 .
22] K Bousmalis, G Trigeorgis, N Silberman, D Krishnan, D Erhan, Domain separa-

tion networks, 2016 arXiv preprint arXiv: 1608.06019 .
23] M Y Liu, O Tuzel, Coupled generative adversarial networks, 2016 arXiv preprint

arXiv: 1606.07536 .
24] E Tzeng, J Hoffman, K Saenko, T Darrell, Adversarial discriminative domain

adaptation, in: Proceedings of the IEEE conference on computer vision and pat-

tern recognition, 2017, pp. 7167–7176 .
25] A Ray, S Rajeswar, S Chaudhury, Text recognition using deep BLSTM networks,

in: 2015 eighth international conference on advances in pattern recognition
(ICAPR), IEEE, 2015, pp. 1–6 .

26] T Mikolov, K Chen, G Corrado, J Dean, Efficient estimation of word representa-
tions in vector space, 2013 arXiv preprint arXiv: 1301.3781 .

27] G E Hinton, S Osindero, Y W Teh, A fast learning algorithm for deep belief nets,

Neural Comput. 18 (7) (2006) 1527–1554 .
28] J. Li, P. He, J. Zhu, M.R. Lyu, Software defect prediction via convolutional neural

network, in: 2017 IEEE International Conference on Software Quality, Reliabil-
ity and Security (QRS), 2017, pp. 318–328 .

29] I Goodfellow, Y Bengio, A Courville, Deep learning, Cambridge: MIT press, 2016 .
30] J. Huang, X. Guan, S. Li, Software defect prediction model based on attention

mechanism, in: 2021 International Conference on Computer Engineering and

Application (ICCEA), 2021, pp. 338–345 .
31] Z Xu, S Pang, T Zhang, et al., Cross project defect prediction via balanced dis-

tribution adaptation-based transfer learning, J. Comput. Sci. Technol. 34 (5)
(2019) 1039–1062 .

32] H. Tong, B. Liu, S. Wang, Kernel spectral embedding transfer ensemble for
heterogeneous defect prediction, IEEE Trans. Software Eng. 47 (9) (2021)

1886–1906 .

33] Javalang, 2020. https://github.com/c2nes/javalang .
34] I.J Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, et al.,

Generative adversarial networks, 2014 arXiv: 1406.2661 .

http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0002
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0003
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0004
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0005
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0006
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0007
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0008
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0009
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0010
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0011
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0012
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0013
http://arXiv:1301.3781
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0015
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0016
http://arXiv:1802.05365
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0018
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0019
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0020
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0021
http://arXiv:1608.06019
http://arXiv:1606.07536
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0024
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0025
http://arXiv:1301.3781
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0027
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0028
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0029
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0030
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0031
http://refhub.elsevier.com/S0167-8655(22)00151-9/sbref0032
https://github.com/c2nes/javalang
http://arXiv:1406.2661

	Cross-project defect prediction based on G-LSTM model
	1 Introduction
	2 Related work
	2.1 Application of NLP techniques
	2.2 Development of CPDP
	2.3 Adversarial learning

	3 Methodology
	3.1 Program Code Parsing
	3.2 AST node mapping and embedding
	3.3 Transfer model building and defect prediction

	4 Experimental setup
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Statistical analysis methods

	5 Experimental design and results analysis
	5.1 RQ1: Can the word embedding model CBOW widely used in the NLP domain learn meaningful vector presentation of tokens in CPDP?
	5.2 RQ2: Can G-LSTM outperform the traditional and state-of-the-art CPDP approaches?

	6 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgments
	References

